
TECHNISCHE UNIVERSITEIT EINDHOVEN
Department of Mathematics and Computer Science

Adaptive authoring of
Adaptive Hypermedia

By

M. Hendrix

Supervisors:
Dr. A. I. Cristea (Technische Universiteit Eindhoven)
Prof. Dr. techn. W. Nejdl (L3S Research Centre / University of Hannover)

Graduation committee:
Dr. A. I. Cristea (Technische Universiteit Eindhoven)
Prof. Dr. techn. W. Nejdl (L3S Research Centre / University of Hannover)
Dr. N. Sidorova (Technische Universiteit Eindhoven)
Dr. J. Broekstra (Technische Universiteit Eindhoven)

Eindhoven, August 2006

 ii

Preface
Authoring of Adaptive Hypermedia is difficult and time consuming. Three main problems exist: there
is no really usable interface for authoring, authors have to do everything manually, they are not assisted
in any way and there is no good way to deal with evolving contexts. In this thesis, we present a step
towards a solution. We discuss the integration of the generic Adaptive Hypermedia authoring
environment MOT into a Semantic Desktop environment, and the integration with an improved, better
usable authoring interface. In our prototypic setup, the semantic desktop environment provides a rich
source of automatically generated meta-data, while MOT provides a convenient way to enhance this
meta-data manually, as needed for an adaptive course environment. Some techniques of malleable
schemas will be used to deal with changing environments and data.
There are many people who I would like to thank for their contributions, if I try to mention all of them
I will certainly forget to mention some. However I would certainly want to mention my supervisor in
Eindhoven, Dr. Cristea, with whom I had a pleasant and fruitful collaboration, and my supervisor in
Hannover, Prof. Dr. techn. Wolfgang Nejdl, who gave me the opportunity to spent 5 months in such an
inspiring place as the L3S research centre and helped me gain insight in the concept of Semantic
Desktop. I would also like to thank Dr. Herder of the L3S research centre for his valuable feedback on
intermediate versions of the thesis.

Maurice Hendrix
Maastricht July 2006

 iii

Contents
Preface..ii
1. Introduction...1

1.1. Adaptive Hypermedia..1
1.2. Semantic Desktop..2
1.3. Towards a better Adaptive Hypermedia authoring environment...2

1.3.1. The lack of a usable interface ...2
1.3.2. The lack of authoring assistance...3
1.3.3. The problem of evolving semantic data..5

1.4. Goals..5
1.5. Thesis overview...6

2. Background and related work ...7
2.1. Authoring of Adaptive Hypermedia ..7

2.1.1. LAOS: Layered Model ...7
2.1.2. Adaptation layer: LAG ...9
2.1.3. CAF (Common Adaptation Format)...11

2.2. Semantic Desktop..13
2.2.1. RDF / RDFS ...13
2.2.2. OWL...15
2.2.3. XSLT ..16

3. Integration of an Adaptive Hypermedia and Semantic Desktop environment18
3.1. Global overview ..18
3.2. Editing a lesson ...18
3.3. Searching for related resources..22

3.3.1. Searching related resources aided by meta-data ...23
3.3.2. Adding related resources to a lesson...23

3.4. The resulting lesson...25
4. Prototypical Adaptive Hypermedia environment..29

4.1. Selected authoring- and Semantic Desktop environments...29
4.1.1. My Online Teacher (MOT) ..29
4.1.2. Beagle++...35
4.1.3. Sesame..36

4.2. Enriching Meta-data ..37
4.2.1. Input Meta-data Schema...37
4.2.2. Output Meta-data Schema ..38

4.3. Transformation workflow..39
4.3.1. RDF2CAF...40

4.4. Handling flexible schemas ..46
4.4.1. Malleable schemas..46
4.4.2. Types of malleable schema...48
4.4.3. Our approach for our prototype ..48

4.5. Implementation of our prototype...48
4.5.1. PHP CAF export, import and merge...48
4.5.2. Java enricher ...49
4.5.3. Integration of extension with MOT ..49
4.5.4. Integration with the new version of MOT ..50

4.6. Discussion ...51
5. Conclusion and Further Work...53

5.1. Solutions..53
5.2. Limitations ..54
5.3. Future work ...54
5.4. Final Considerations..55

References ..56
Index...62
Appendix A. Installation guide..64
Appendix B. UML description of MOT extension ...65
Appendix C. UML description of enricher..69

Chapter 1 Introduction

 1

1. Introduction
Adaptive Hypermedia is a generalized paradigm for web pages which can adapt their content towards
the users need. Active research, see for example (Cristea, De Mooij, 2003b) or (De Bra et al., 2002), is
being done and a number of systems currently already exist.
In this thesis we will describe the development of a prototypic Adaptive Hypermedia authoring
environment. This will show that authors can indeed be provided with a usable interface and authoring
assistance and that the authoring process itself thereby can be made more profitable. In the process, an
existing Adaptive Hypermedia authoring environment will be integrated with an environment which
allows retrieval of relevant information, a Semantic Desktop environment. This integration will
combine two fields, which where previously almost completely separated. The prototype makes the
creation of courses in an Adaptive Hypermedia system easier, by semi-automatically adding content
with appropriate adaptation. An author may have work on his desktop which is private, work in
progress, or which he does not want to publish for any other reason. We want to give the author full
control over what gets added and thus, what will be made publicly available.

Authoring of Adaptive Hypermedia is considered difficult and time consuming. Currently, Adaptive
Hypermedia systems require authors to learn a complicated way of authoring, which puts off a lot of
potential users (Saksena, Cristea, 2006). Therefore, there is a great need of improving authoring
environments for Adaptive Hypermedia. The challenge is to provide an authoring environment, with
which authors will be able to author their content in a much easier way, an environment in which they
are not required to learn any complicated new formats and where they are helped during the authoring
process. When this is achieved, authoring itself of Adaptive Hypermedia will become more accessible
to authors anywhere.

A possible way of solving the problem of difficulty of authoring is to address the issue of a usable
interface. Such a usable interface is developed by (Cristea et al., 2006b) and (Saksena, Cristea, 2006).
In (Saksena, Cristea, 2006), an Adaptive Hypermedia system with increased usability is defined, based
on user-system interaction studies, see also (Cristea, Cristea, 2004), (Cristea, 2004) and (Cristea, de
Mooij, 2003c). The system defined offers a relatively easy interface to authors, which will prevent
them from having to spend too much effort to learn the interface.
In this thesis we focus on another issue that can alleviate the difficulty of authoring, the need for
assistance. In particular, here we consider that the author can be helped a great deal, if, starting from a
basic course which offers no (or little) adaptivity, he is provided with suggestions of related content to
add for adaptation – thereby semi-automatically creating content alternatives for different paths
through the content. As an author is expected to also be an expert in the field, one of the best sources
for reliable related information, disregarded by previous research, is the author’s own desktop. For this
purpose we use a special desktop, called the Semantic Desktop.

The Semantic Desktop is a paradigm for desktop computing, where information is stored in a way
which captures its meaning, to some extent. This enables retrieval of relevant information in a much
better way than with information stored as raw content. Of course, this information does not stay static,
but evolves. The exact way in which this information is stored also evolves. Our approach will also be
dealing with this important issue, in order to provide more then just a short-term solution.
This chapter is organised as follows. The concepts of Adaptive Hypermedia and Semantic Desktop will
be introduced in more detail in sections 1.1 and 1.2. In section 1.3, the problems current Adaptive
Hypermedia authoring systems face are described in more detail, and, in section 1.4, we describe our
thesis’ goals, defined in order to solve these problems. Finally, in section 1.5, an overview of the rest of
the thesis can be found.

1.1. Adaptive Hypermedia
Adaptive Hypermedia systems adapt the content they show towards the user’s need. Research Adaptive
Hypermedia systems have models where a clear-cut distinction is made between content, grouping of
content and adaptation towards a user (Brusilovsky et al., 1996). Such a clear-cut separation of
concerns is absolutely essential, in order to be able to effectively author content in the long run.
Adaptive Hypermedia systems enable an author to create content, which, with the use of adaptation,
only gets delivered to the users it is intended for. As already mentioned, however, authoring is
currently still a difficult and time-consuming process. The reasons behind this are the poor interfaces
available, as well as the lack of specific, adaptive hypermedia-oriented authoring assistance. These

Chapter 1 Introduction

 2

problems have to be addressed in order to provide an authoring environment which has a chance of
offering real benefits to authors. Our solutions are, therefore, a first step towards such an improved
authoring environment and towards acceptance among authors of authoring for adaptive content.

1.2. Semantic Desktop
There is a lot of data we all use every day. Most of this data however is just stored as raw data, without
any obvious semantics. The Semantic Web (W3C, 2001) is a web of data, with a meaning attached.
Systems can make use not only of the raw data but, also of this meaning. A storage format called RDF
has been defined to capture this new type of data. If, for example, people talk, they do not just
exchange raw data, but this data also has a meaning. All parties involved in a dialogue (both people in a
conversation, and systems in a transaction) have to agree upon a common meaning of the data. This can
be done by means of defining a common ontology. This is an agreement on the structure of the data
and suggests a common way of interpreting the data. In our approach to create author assistance, we
will use this kind of data to be able to semi-automatically offer sensible (adaptive) content, which an
author can add to his work. However, just as is the case of a conversation between humans, not all
parties necessarily agree exactly on the way to represent and interpret data. If, however, the difference
is not too great, humans can still make a mapping of the information they receive from one another to
something they understand. Our solution will have to be able to do this as well for systems, because it
may have to deal with data from various sources and of different versions.

On a true Semantic Desktop we would not only capture simple names, folder hierarchies and creation
dates, such as one normally would by only using the current file system attributes, but also many other
information types about files. This richer structure would allow categorizing resources by rich
ontologies (Hendrix et al., 2006). Links (such as defined in RDF) can express several types of
relationships between documents explicitly. The currently used folder hierarchies can only express one
type of relation: the ‘is-part-of’ relation. A Semantic Desktop environment will store and keep track of
semantic data regarding the files present on the computer. This among other things makes it easier to
find files or other information. In our case, such semantic data can be used to retrieve information
necessary to add adaptive content semi-automatically.

1.3. Towards a better Adaptive Hypermedia authoring
environment

As already mentioned, if we are to make the authoring task easier, we need to address the problem of
the poor usability of Adaptive Hypermedia systems as well as the lack of authoring assistance. We also
need to provide a way of handling evolving semantic data to a certain extent, in order to be able to take
advantage of data from various sources and versions.
We argue that we can solve these problems and make a first step towards a better Adaptive
Hypermedia authoring experience. We want to do this by taking advantage of a newly improved
Adaptive Hypermedia authoring system, which provides a relatively usable interface via web forms.
This solution to the problem of the poor interface had therefore to be integrated with a Semantic
Desktop environment, and we endeavoured to show that this integration can indeed provide authoring
assistance.
In this thesis we will treat these problems firstly from a theoretical point of view, and then show, in
praxis, how a prototype based on this integration can indeed be built, the problems it solves, and how it
can handle evolving semantic data.
In the following sections we will be having a closer look at these three problems: the lack of a usable
interface, the lack of authoring assistance and dealing with evolving semantic data, as well as show that
solving these problems represent a step towards a better Adaptive Hypermedia authoring environment.

1.3.1. The lack of a usable interface

Currently, authors are often put off by the (lack of or complexity of) authoring systems for Adaptive
Hypermedia. For some systems, they would have to learn complex formats, for others they would have
to deal with a complicated interface. Authors who are also experts in computer science, may not be put
off by this, but authors from other fields will easily be scared away, if for example they world have to
author in a format like the CAF format (Cristea et al., 2005b) directly. The CAF format is a common
format used to exchange content between different Adaptive Hypermedia systems. The example below
shows a CAF file with one domain map, displayed in the domain model part. The domain model is
called ‘Adaptive Hypermedia’ with a root concept titled ‘Adaptive Hypermedia’. It has some attributes

Chapter 1 Introduction

 3

which are skipped for the time being, and it is used for a goal map which is not shown either, but is
located in the goal model part.

<CAF>

<domainmodel>
<concept>

<name>Adaptive</name>
<concept>

<name>Adaptive Hypermedia</name>
<attribute>

<name>title</name>
<contents>Adaptive Hypermedia</contents>

</attribute>
</concept>
…

</concept>
…

</domainmodel>
<goalmodel>
</goalmodel>

</CAF>

An easy to use authoring system, in which the interface feels natural and where the functionality
needed for authoring of Adaptive Hypermedia is implemented in a sensible way will have the potential
to open authoring of Adaptive Hypermedia to non-experts in the field.

To see why this problem needs to be tackled on our way towards a better Adaptive Hypermedia
authoring interface, consider the following scenario: an arts teacher wants to make an adaptive
presentation on video art. He thinks it useful for his students to start with a basic introduction first and
then move on from there. He decides, therefore, that it will be a good idea to deliver the presentation
interactively via an Adaptive Hypermedia system, that is able to pace the information delivery process,
and, e.g., can deliver extra information, only when students are ready to read it, and not eariler.
The teacher may be intimidated by the idea of learning new, complex formats, and opts therefore to use
instead an Adaptive Hypermedia authoring system with a web forms interface, such as My Online
Teacher (MOT website). This may sound as if his problem is thereby solved. However, this particular
teacher, after entering a few concepts, looses track of the information already inserted. The ‘no-frills’
version of MOT, however, (as most extant authoring systems for adaptive hypermedia) does not
provide a search function. After finding the parts of his course back by hand, the teacher tries to reorder
the information into actual presentations. The tricky interface for this process confuses the teacher;
moreover, as he gets more and more caught up in the intricacies as well as inconsistencies of
terminology (e.g., a domain map being also called concept map, etc.) he may give up his initial idea of
using an Adaptive Hypermedia system at all.
This short doomsday scenario shows that, although an interface is considered, in research, as a
secondary feature, when facing a real user, a bad interface can actually hide the rich functionality of a
system, instead of highlighting it. Therefore good interfaces themselves are important.
Next, we shall look at other issues in authoring.

1.3.2. The lack of authoring assistance

Adaptive presentations offer advantages above static presentations, by delivering information tailored
to the users’ needs (Brusilovsky, 1996). Creating adaptive presentations, however, is time consuming
and difficult. Therefore, any authoring system for adaptive hypermedia would need to offer a great
degree of assistance, in order to be successful.

In particular, to achieve useful adaptation, a number of alternative paths through the contents have to
be created. In order for Adaptive Hypermedia to adapt to the user, all these possible alternatives which
can be shown still need, traditionally, to be created manually. However, as some experts strongly put it,
‘manual creation of meta-data is dead’ (Duval, 2006) and the future is for (semi-)automatic generation
or processing of metadata. In our setting, this means that relying on the author to enter content
alternatives and meta-data by hand is not a good idea, as an author will probably not be able to provide
all the required data in a reasonable time.

Therefore, the challenge is to make the authoring task easier, by automating as many of the content
creation steps (replacing them with content retrieval) and the content labelling steps, as possible. This
is the type of assistance we target here, in this thesis. The final product of this automatic, adaptive
authoring process will be based on the LAOS (Cristea, De Mooij, 2003b) model. The LAOS

Chapter 1 Introduction

 4

framework for Adaptive Hypermedia authoring is a layered model, in which content, grouping of
content, presentation and adaptation towards the user is separated in different layers. This separation
enables a structured approach of the authoring process (see section 2.1.1).

In this thesis, the automatic data generation process is achieved by combining Semantic Desktop search
with (semi-) automatic authoring of Adaptive Hypermedia.

The following motivating scenario for adaptive authoring builds upon both automatically and manually
generated meta-data. It has been first described in (Hendrix et al., 2006) and illustrates the problem we
try to solve.
Dr. Van Bos prepares a new on-line course on Adaptive Hypermedia for undergraduate 4th year TU/e
students. The university work distribution allocates a limited amount of time for this, equivalent to the
creation of a static, linear course. However, he uses a concept-based adaptive educational hypermedia
authoring environment with adaptive authoring support, MOT (Cristea, De Mooij, 2003), (MOT
website) because of two main reasons:

· Dr. Van Bos considers it useful to be able to extend the course in the future with more
alternative paths guided by adaptivity.

· He wants to benefit from automatic help during the authoring process.
This decision costs him slightly more time than the static course creation, as he has to manually divide
his course into conceptual entities with explicit, independent semantics and semantic labelling.
The advantage is that the adaptive authoring system can afterwards automatically enrich the course
based on pedagogical strategies. For instance, the system can consider the version of the Adaptive
Hypermedia course created by Dr. Van Bos as the version for beginner students, which are only
moderately interested in the subject, and do not aspire at higher grades or deep knowledge on the
subject. For advanced students, wishing to pass the course with high honours, or simply wanting to
acquire more information for their future professional lives, the adaptive authoring system can use
semantic personal desktop search to automatically find on Dr. Van Bos’s desktop any existing
scientific papers that are relevant to the current course. These scientific papers can be used as
alternative or additional material to the main storyline of the static course.
This mechanism builds upon the following assumptions:

· As Dr. Van Bos is a specialist in the subject taught, his interest is wider than that given by the
limitations of the course; he therefore both publishes and reads papers of interest on the
subject, which are likely to be stored on his computer.

· These papers can be considered as useful extra resources for the current course, and can
therefore be reused in this context.

· As this storing process has taken place over several years, Dr. Van Bos may not know exactly
where on his computer each individual article relevant to the current course is.

· Dr. Van Bos has been using Beagle++ Semantic Desktop System (Beagle++ website), (Chirita
et al., 2006) to store both papers and all relevant meta-data automatically, in RDF format.

This situation can be exploited by the authoring tool; a quick search will find some of Dr. Van Bos’s
own papers on Adaptive Hypermedia, as well as some copies that he has of his colleagues’ on the
topic, such as, for instance, the paper of Brusilovsky, called “Adaptive Educational Hypermedia: From
generation to generation” (Brusilovsky, 2004), or the paper “Adaptive Authoring of Adaptive
Hypermedia” (Cristea, De Mooij, 2003b).
He may have saved these papers by himself, or might have received them by e-mail, from a colleague
working in the same field, or may have used his browser’s bookmarks to mark their position on the
Web.
In order for these retrieved resources to be relevant to the overall Adaptive Hypermedia course, two
conditions have to be fulfilled:

· The domain concept in the course where each resource is most relevant has to be found (the
right information).

· The resource has to be bound to that particular domain concept (in the right place).
This means that the first paper can be added in the course at a higher level, somewhere next to the
explanation of generic principles of Adaptive Hypermedia, whereas the second paper should only be
placed somewhere in connection with the authoring process in Adaptive Hypermedia, otherwise its
content might be too specific to follow.
How can Van Bos find the right resource and add it in the right place? The search can take place via the
keywords labelling both the course pieces created by Van Bos, on the one hand, and the matching
keywords labelling the papers and resources on his desktop, on the other hand.

Chapter 1 Introduction

 5

Please note that the system could, in principle, also make these additions purely automatically. The
semi-automatic step however involves Dr. Van Bos actually giving his permission about files from his
own desktop to be added to the students’ course – a precaution which he considers very useful.
The following section will continue describing in more detail how Dr. Van Bos can enrich his course
semi-automatically, without much extra work, as well as keep at all times the overall control and
overview, by highlighting other problems which can appear and offering new solutions.

1.3.3. The problem of evolving semantic data
The semantic data provided by Semantic Desktop environments will evolve over time. Because of this,
a solution to the problem of semi-automatic authoring of adaptive content will have to deal with this
evolution, as it may have to deal with information from different versions and sources. The solution
needs to be able to handle ‘malleable’ semantic data, i.e., data which does not have the exact structure
or content as is expected. Reasons for these differences can be multifold. Evolving insight will make
the semantic data differ. Additional information may be added, naming may be changed and paths may
differ from what we expected before. This may also happen because, e.g., the source of the semantic
data changes.

Imagine Dr. Van Bos (the teacher of section 1.3.2) wanting to author yet another course. Again he
chooses to use the concept-based adaptive educational hypermedia authoring environment with
adaptive authoring support, MOT (Cristea, De Mooij, 2003), (MOT website). In the meantime,
however, a new standard format for storing papers has been introduced. Plug-ins for Semantic Desktop
environments have been developed, enabling the meta-data generation for this file type. The meta-data
produced uses a different schema, which is reflected by some new features for this file type: a slightly
different naming convention, compared to the old file type, and in the listing of some attributes in an
indirect way. The previous schema provided the paper with an attribute called file name , where as
the new format has a relation to a file entity which has a name. Due to the fact that the (semi-)
automatic population system has taken these kinds of changes into account, Dr. Van Bos proceeds in
the same way as in section 1.3.2. He creates a basic course, and lets the system semi-automatically add
relevant resources. Provided that the basic course, as well as the content of the information present on
his desktop is the same, he gets a similarly satisfying result. The change in the internal settings should
not have affected his results.

1.4. Goals
As we have seen in section 1.3.2, automating some of the steps is very profitable, as an author does not
need to add resources or meta-data manually. Adding resources manually is very time-consuming and
hard to manage. In this thesis we want to improve the experience of authoring Adaptive Hypermedia.
We want to make the authoring process itself more profitable for potential authors, based on solving
the problems we have described previously.

Our main goal, therefore, is achieving (or at least making a step towards) Adaptive authoring of
Adaptive Hypermedia.

Adaptive Hypermedia is not limited to the educational field and a course with alternatives for
beginning, intermediate and advanced students. Although this is the main example we use in this thesis,
our approach applies to other fields and can be used with other strategies, as well. The choice of My
Online Teacher is motivated by its authoring interface and not by the educational setting. To make a
step towards our main goal, we define the following sub goals:

Sub-goal 1. Make the authoring process more profitable by our proposed solution, the integration
of two fields which have been almost completely separate until now, Adaptive Hypermedia
authoring and the Semantic Desktop.

Sub-goal 2. Provide a form of authoring assistance.
Sub-goal 3. Take advantage of automatically generated meta-data to save manual annotation

steps.
Sub-goal 4. Perform the integration with a new, improved web forms-based authoring interface,

to provide authors with a usable interface in which they receive some assistance. Produce a
prototype of this integration based upon the My Online Teacher Adaptive Hypermedia
authoring system and on the Beagle++ Semantic Desktop environment.

Chapter 1 Introduction

 6

There may be several other possible ways to create an optimal adaptive course. For example,
adding extra material for beginning students as prerequisite knowledge. In the process of this
thesis however, we will assume the following:
In an educational setting, taking a basic course and extending it with relevant supplementary
material of higher difficulty (such as articles on the subject) is a good (and simple) way to create
an adaptive course for advanced learners.

1.5. Thesis overview
The remainder of this thesis is organised as follows. In chapter 2, more information will be given about
related work. This is where both the concepts of Authoring of Adaptive Hypermedia as well as
Semantic Desktop are explained in more detail. We will show the main techniques involved. We will
show that the Semantic Desktop with its techniques offers unique possibilities for retrieving relevant
items from the desktop in a smart way. Authoring environments, as we will see, lack authoring
assistance; a very innovative form thereof is (semi)automatic generation of content, so this retrieval of
relevant material is exactly what the authoring environments need, in order be able to provide useful
help at the content side.
In Chapter 3, we introduce our method for providing this authoring assistance. The technical details of
how we tackled the problems Adaptive Hypermedia authoring currently suffers from, the lack of a
usable interface and the lack of authoring assistance, and how we deal with evolving Semantic data, is
shown in chapter 4. We achieved the actual improvement of Adaptive Hypermedia authoring, by
integrating

o a solution to the problem of the lack of authoring assistance
o with a new, improved version of an authoring system based on web-forms.

This is done by means of integrating a new improved interface with an extension that offers authoring
assistance, achieved by integrating an Adaptive Hypermedia authoring environment and Semantic
Desktop environment. We will present the selected environments for the integration and motivate why
we selected them. After looking into both environments, we also show how we achieved the actual
integration from a more concrete point of view. This process resulted in a prototype. Its implementation
is described in chapter 4 and in more detail in Appendix B and Appendix C. An installation guide can
be found in Appendix A.

Finally, chapter 5 will show that indeed we achieved our goal of creating a better Adaptive Hypermedia
authoring environment. Also, directions where we want to take Adaptive Hypermedia authoring from
here can be found in chapter 5.

Chapter 2 Background and related work

 7

2. Background and related work
In this chapter we present important related work, to provide the necessary background required for the
rest of this thesis. As mentioned in the first chapter, we want to make authoring of Adaptive
Hypermedia easier by integrating an Adaptive Hypermedia authoring environment with a Semantic
Desktop environment. Therefore, we shortly introduce the concept of authoring of Adaptive
Hypermedia in section 2.1. In that section we also look at Adaptive Hypermedia from a model point of
view. We do this by examining the LAOS framework for Adaptive Hypermedia authoring, with its
LAG model for adaptation, in some detail. LAOS is the model used by the Adaptive Hypermedia
authoring interface we selected to base our prototype on. In our prototype, the integration is achieved
by means of processing a common file format, in a way which is very similar to a conversion of the
content between Adaptive Hypermedia systems. Therefore, in section 2.1.3 we introduce the common
file format used and discuss conversions & interfacing.

With Adaptive Hypermedia, web pages can adapt their content towards the user’s needs. Adaptive
Hypermedia is further introduced in section 2.1. The Semantic Desktop is a desktop where information
is not just stored as raw material, but is stored together with additional semantic information about its
meaning. The Semantic Desktop will be introduced in more detail in section 2.2. The main techniques
used in the Semantic Desktop, RDF and OWL, are introduced in sections 2.2.1 and 2.2.2 respectively.
As in our prototype we will use XSLT (to convert between formats), we also introduce XSLT in
section 2.2.3.

2.1. Authoring of Adaptive Hypermedia
Nowadays, Adaptive Hypermedia systems (AHS) are becoming more popular due to their correlation
with the recent endeavour of the W3C and the IEEE LTTF (IEEE LTTF website) community towards
(ontology-based) customization and the Semantic Web (W3C, 2001), (Cristea, De Mooij, 2003b). The
edge of AHS research and implementations (such as AHA!) over classical Intelligent Tutoring Systems
(ITS) (Brusilovsky et al., 1996) relies on their simplicity: they contain a simple domain model, user
model (usually an overlay model of the domain model), aimed at a quick response, which is extremely
beneficial in the speed-concerned WWW environment.
To enable Adaptive Hypermedia to adapt its content towards the user’s need, alternatives for different
types of users need to be present. The author has to create all possible paths and assign weights and
labels to indicate when each piece of content should be shown. How these weights and labels are used
will follow.

In our approach of integrating an Adaptive Hypermedia authoring environment with a Semantic
Desktop environment we choose My Online Teacher as the authoring environment. Our main reasons
for choosing MOT over any other research Adaptive Hypermedia authoring system is its relatively well
developed interface, which has even been recently improved (Saksena, Cristea, 2006), as well as the
availability of a meta-data schema.
The LAOS model (section 2.1.1) presents a clear and well defined model on which Adaptive
Hypermedia systems can be based. Such a clear-cut separation of concern between concepts, the
grouping of concepts and the adaptation and presentation is absolutely essential in order to be able to
author larger pieces of content with the desired adaptation.
The LAG layer (section 2.1.2), in particular, is itself a three-layer adaptation model, used in multiple
AHS for providing the adaptation model for the LAOS Adaptive Hypermedia model. The separation of
content and adaptation allows effective authoring.
In the rest of this section we will introduce both LAOS and LAG in more detail.

2.1.1. LAOS: Layered Model

The LAOS model is a more general layered framework for Adaptive Hypermedia authoring, built upon
AHAM (Wu, 2000), a well-known model developed at the Eindhoven University of Technology, and
based on previous models proposed for the educational field (Cristea, Aroyo, 2002). Well known
Adaptive Hypermedia authoring systems like My Online Teacher are based upon the LAOS layered
model.
A previous version of it, the layered model for Adaptive Hypermedia authoring design methodology
for (WWW) courseware (Cristea, Aroyo, 2002) suggests the usage of the following three main layers:
conceptual layer expressing the domain model (CL - with sub-layers: atomic concepts and composite
concepts – with their respective attributes), lesson layer (LL - of multiple possible lessons for each

Chapter 2 Background and related work

 8

concept map or combination of concept maps) and student adaptation and presentation layer (SAPL -
based on: adaptation model and presentation model). All these layers should be powered by the
adaptation engine (AE). Note that, already, when compared to (Wu, De Bra, 2001) this predecessor
model was using the lesson model (LM) as an intermediate model between the domain model (DM)
and the user and adaptation model (UM, respectively AM).
The LAOS model is a more generalized model for generic Adaptive Hypermedia authoring. The idea is
based on the book–course or book–presentation metaphor: generally speaking, when making a
presentation, be it on the Web or not, we base this presentation on one or more references. Simplifying,
a presentation is based on one or more books. With this in mind, it is obvious why one cannot jump
from the DM to the AM (or UM): it would be equivalent to skipping the presentation and just telling
the user to read the book. In other words, the search space is too big and there is a too high degree of
generality (no purposeful orientation within the initial material - i.e., book).
Therefore, an intermediate authoring step is defined, which is goal and constraints related: goals1 to
give a focused presentation, and constraints to limit the space of the search2. Simplifying, we can
consider the goal as being a specific end-state, and the constraint to be defined as a sub-layer of the
goal and constraints model model (GM) (see Figure 1).
Thus, in a general-purpose Adaptive Hypermedia authoring environment, LM is replaced by the goal
and constraints layer (GM); this explains why, in some LAOS-based systems, an entity in this layer is
called a lesson, instead of a goal model. Moreover, obviously, student adaptation and presentation
becomes the user adaptation handled by the user model, UM, and the teacher-author persona is
replaced by a general Adaptive Hypermedia designer.
There are some fundamental differences between having only DM or, DM and GM, as follows:

· Dynamic (adaptive) presentation generation becomes possible (Cristea, De Mooij, 2003).
· The actual presentation seen by the user can contain both elements of the GM as well as

elements of the DM (e.g., for clarification of an explanation based on only the GM, the other
elements/objects of the respective concept, or the other concepts related to the current concept,
can be referred, via a jump over one layer; this corresponds to sending the student back to his
book to find a definition that should have been in his prior knowledge). This increases the
flexibility and expressivity of the created adaptive presentations.

· The AE has to actually implement not only selectors, but also constructors (Wu, De Bra,
2001), as presentations can contain any type of combination of (ordered and weighted)
attributes of concepts; in AHAM (Wu et al., 2001) constructors are mentioned, but considered
outside the scope of the model. This increases the complexity of the system, and issues such
as guaranteeing termination and confluence get new dimensions (Wu, De Bra, 2001).

The total LAOS framework is composed therefore of five components: DM, GM, UM, AM, PM, as can
be seen in Figure 1.
The (concept map oriented) design steps for the authors (Cristea, Aroyo, 2002) to take are:

· STEP 1: write domain concepts + concept hierarchy
· STEP 2: define domain concept attributes (define main and extra attributes)
· STEP 3: fill in domain concept attributes (write contents)
· STEP 4: add content related adaptive features regarding GM (design alternatives – AND, OR,

weights, etc.)
· STEP 5: add UM related features (simplest way, tables as in AHAM (Wu et al., 2001), with

attribute-value pairs for the user-related entities)
· STEP 6: decide among adaptation strategies; write in adaptation language medium-level

adaptation rules (such as defined in (Calvi, Cristea, 2002)) or give the complete set of low
level rules (Cristea, De Bra, 2002) (such as condition-action: CA (Wu, 2000), or IF-THEN
rules).

· STEP 7: define format (presentation means-related; define chapters)
· STEP 8: add adaptive features regarding presentation means (define variable page lengths,

variables for figure display, formats, synchronization points (W3C, 2005), etc.).

1 By introducing goals, it is also clear why this level is a dense level, made of multiple versions for each initial concept map or
combination of concept maps: simply because there are multiple design goals to consider.
2 Note that this still means that various flexibility degrees are left for the final adaptation to the user and presentation model, so
that the presentation material does not become uniquely determined.

Chapter 2 Background and related work

 9

Legend:

DM = Domain Model; domain maps.
 domain concepts
 and their relations are
 defined here

GM = Goal (and constraints)
 Model; useful domain concepts
 are filtered and grouped
 together here into goal maps;
 (is sometimes also called
 lesson model in educational
 settings; the goal maps become
 lessons then)

UM = User Model; here, user
 specific variables are kept
 e.g. level, age, etc.

AM = Adaptation Model; defines
 how the content is adapted
 to the users needs

PM = Presentation Model;
 determines the look and feel, as
 well as quality of service
 parameters

Figure 1 LAOS layered structure

2.1.2. Adaptation layer: LAG

In the previous section we have shortly described a general framework for Adaptive Hypermedia
authoring, LAOS. The functionality of the AM was further converted into a three layer model, LAG
(Cristea, Calvi, 2003), (Cristea, Kinshuk, 2003) (see the right part of Figure 2), as first mentioned in
(Cristea, De Bra, 2002), and partially defined in (Cristea, Calvi, 2003): direct adaptation techniques
(such as condition-action (CA) rules), adaptation language and finally, adaptation strategies.

Concepts in the LAOS Goal and constraints model can have weights and labels. These weights and
labels are used in an adaptation strategy. In our prototype, the preparation for adaptation is realised by
means of semi-automatically assigning appropriate weights and labels to the newly extracted material.
It depends on the used strategy, which labels and weights are appropriate. The adaptation strategy is
defined in an adaptation language called LAG, after the adaptation layer. An example of a LAG
strategy can be found below. As can be seen, the LAG language looks a little like a procedural
programming language and, in fact, one can think of it as a domain specific programming language.
The example below shows a strategy called ‘beginner – intermediate - advanced’. This strategy
displays concepts to the user, depending on his experience level. The example uses the labels ‘beg’,
‘ int’ and ‘adv’ for concepts intended for beginner, intermediate and advanced users, respectively. The
example below uses a number of variables. The ’show’ variable is one of the few standard variables3,
which determines if the concept is shown. Other variables are also used, for example to record if a
concept has been visited, or how many concepts of a particular group of concepts have been visited. It
is more elegant to keep the set of variables as small as possible. Fewer variables make strategies

3 The LAG language tries to impose as few as possible standard variables, to give freedom of expression to the adaptation author.
However, such variables as the variable for determining the truth value of the showing state of a concept have to be predefined.

Chapter 2 Background and related work

 10

smaller in terms of file size, which makes them also easier to read. Fewer variables also make strategies
smaller in terms of memory usage, which makes them perform better, as the system does not have to
keep track of so many variables4. Below the example with comments is shown.

The initialisation part is first performed once, after which, every time the user selects a (lesson)
concept, the implementation part, which is the actual interaction with the user, is performed.

initialization(

1) general: make every general (unlabeled) concept readable; mark every
concept as "not visited yet"

 while true (
 PM.GM.Concept.show = true
 UM.GM.Concept.beenthere = 0
)

2) set the number of concepts for beginning, intermediate and advanced students to 0

 UM.GM.begnum = 0
 UM.GM.intnum = 0
 UM.GM.advnum = 0

3) count and store the number of concepts for beginning students

 while GM.Concept.label == beg (
 UM.GM.begnum += 1
)

4) count and store the number of concepts for intermediate students

 while GM.Concept.label == int (
 PM.GM.Concept.show = false
 UM.GM.intnum += 1
)

5) count and store the number of concepts for advanced students

 while GM.Concept.label == adv (
 PM.GM.Concept.show = false
 UM.GM.advnum += 1
)

6) set the level of the student to beginner

 UM.GM.knowlvl = beg
)

implementation (

7) UM.GM.Concept.beenthere computes the "number of times Concept has been accessed" Also keep
track of how many beg, int and adv concepts still need to be visited.

 if UM.GM.Concept.access == true then (
 if (UM.GM.Concept.beenthere == 0) then (
 if (GM.Concept.label == beg) then (
 UM.GM.begnum -= 1
)
 if (GM.Concept.label == int) then (
 UM.GM.intnum -= 1
)
 if (GM.Concept.label == adv) then (
 UM.GM.advnum -= 1
)
)
 UM.GM.Concept.beenthere += 1
)

8) Change stereotype beg -> int -> adv when appropriate Make relevant concepts visible

4 Especially global variables have to be used sparingly, as, depending on the implementation of the AE, this can lead to great
overhead. In AHA!, for instance, rules on global variables have to be copied in each concept – multiplying therefore the initial
LAG code by the number of concepts existent in a domain map.

Chapter 2 Background and related work

 11

 if enough(UM.GM.begnum < 1
 UM.GM.knowlvl == beg
 ,2) then (
 UM.GM.knowlvl = int
)
 if enough(UM.GM.intnum < 1
 UM.GM.knowlvl == int
 ,2) then (
 UM.GM.knowlvl = adv
)
 if (GM.Concept.label == UM.GM.knowlvl) then (
 PM.GM.Concept.show = true
)
)

Figure 2 The five level AHS authoring model & The three layers of adaptation

2.1.3. CAF (Common Adaptation Format)

CAF (Cristea et al., 2005b) is a portable XML format, extracting common and extraneous elements
related to the way adaptive content is represented in most Adaptive Hypermedia Authoring systems,
and is used by systems such as MOT, Content-e/LAOS (Cristea et al., 2006b) and AHA! (De Bra et
al., 2002). The CAF format offers a domain model part, where the information on the MOT domain
concept maps is stored; and a goal model, where the information on the MOT goal & constraints model
is stored. Although not an official standard yet, we think it could well be one in the future.
Below, we show the DTD definition of the CAF file. A CAF file exists out of two parts, a domain
model part and a goal model part. In the domain model part, all domain maps, which are used by the
exported goal map, are described. The domain model has a number of concepts that represent the used
concept maps. Concepts can, in turn, have sub-concepts; as well as attributes that represent relevant
concept meta-data, such as a title; or relations, that represent connections to other concepts. Attributes
have a name and contents. Relations have a name and a relation link. The relation link connects to
another concept, with which the concept is thereby associated. The relation link depends on the
existence of the concept in the domain model part. Only concepts which are present there can be linked
this way.

In the goal model, normally, only a part the exported goal map is described. The goal model (or lesson)
can have any number of sub-lessons, which again, in turn, can have sub-lessons. The ‘link’ attribute in
the DTD represents the fact that lesson concepts are actually pointers to domain concept attributes.
This link also has a weight and label, to enable adaptive systems to decide (via adaptation strategies)
for which users its target has to be shown.

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT CAF (domainmodel?, goalmodel?)>

<!ELEMENT domainmodel (concept+)>
<!ELEMENT concept (name, attribute*, concept*, rela tion*)>
<!ELEMENT attribute (name, contents)>
<!ELEMENT name (#PCDATA)>

• lowest level: direct adaptation techniquesdirect adaptation techniques/ rules/ rules
– adaptive navigation support &adaptive presentation
– implem.: AHA!; expressed in AHAM syntax
– techniques usually based on threshold computations of variable-value

pairs.

• mediumlevel: adaptation languageadaptation language
– more goal /domain-oriented adaptation techniques:based on a

higher level language that embraces primitive
– low level adaptation techniques (wrapper)
– new techniques:adaptation language

• highlevel: adaptation strategiesadaptation strategies
– wrapping layers above
– goal-oriented

Adaptation
Assembly
language

Adaptation
Programming

languageAdaptation
Function calls

Chapter 2 Background and related work

 12

<!ELEMENT contents (#PCDATA)>
<!ELEMENT relation (name, relationlink+)>
<!ELEMENT relationlink (#PCDATA)>

<!ATTLIST relationlink
 weight CDATA ""
 label CDATA ""
 type CDATA ""
>

<!ELEMENT goalmodel (lesson)>
<!ELEMENT link (#PCDATA)>

<!ATTLIST link
 weight CDATA ""
 label CDATA ""
>

<!ELEMENT lesson (link*, lesson*)>

<!ATTLIST lesson
 weight CDATA ""
 label CDATA ""
>

The following example illustrates the DTD. The example below shows a CAF file with one domain
map, appearing in the domain model part. The domain model is called ‘Adaptive Hypermedia’, with a
root concept titled ‘Adaptive Hypermedia’. It has some attributes, which are not shown here, and is
used for a goal map, which is not shown either, but is located in the goal model part.

<CAF>

<domainmodel>
<concept>

<name>Adaptive</name>
<concept>

<name>Adaptive Hypermedia</name>
<attribute>

<name>title</name>
<contents>Adaptive Hypermedia</contents>

</attribute>
</concept>
…

</concept>
…

</domainmodel>
<goalmodel>
</goalmodel>

</CAF>

Interfacing is defined (Webster) as the place at which independent and often unrelated systems meet
and act on or communicate with each other. This definition is the closest to the interpretation used in
this report. Concretely, we are referring here to three specific types of interfacing, defining three
separate dimensions:

o conversions between systems
o modular extension approach
o querying systems

Conversions between systems can take place from the adaptive authoring solution to the training system
or vice-versa. The advantage of conversions is that they can take place at a different time from the
training content delivery and require no real-time transactions. However, the granularity of the
conversion needs to be relatively low (in order for the converted material to be semantically relevant
and independent). Furthermore, there are two types of possible conversions between systems: a
conversion between systems can be full or partial.

o In a full conversion, a full solution is converted from one system to another. This is in practice
difficult to achieve, as ALL components needed for the adaptation have to be converted.

o In a partial conversion, only some of the elements of the adaptive solution or training system
are converted (for instance, only the learner model, or only a CAF file).

In the modular extension approach, one system (adaptive solution or training system) serves as an
extension module for the other one. Another way of looking at this is to consider the two systems
building a larger system with extended functionality. This, however, needs permanent access to both
systems in real time.

In querying systems, adaptive solutions are delivered via a query interface. One of the systems queries
the other one for the sub-elements necessary for delivery. This is the highest granularity interfacing

Chapter 2 Background and related work

 13

possibility, as each sub-element can be queried separately. This also needs permanent access to both
systems in real time.

There are three main ways to perform a conversion:

· A pure one-to-one system to system conversion, such as the one between MOT, the Adaptive
Hypermedia system used in our prototype and WHURLE, another Adaptive Hypermedia
system.

· A conversion via a common file format, which is not (yet) a standard. An example is the
conversion via the CAF format between MOT and the AHA! Adaptive Hypermedia system
(De Bra et al., 2002). This is the approach we took, because it offers possibilities for moving
towards a more system independent solution, whilst dealing with a very simple format.

· We think interfacing via standards is the most flexible way, if extension to other or arbitrary
environments is important. Because of this, we later included ways to use RDF, via (on the
fly) conversion of CAF into RDF and RDF into CAF.

2.2. Semantic Desktop
The application of our solution involves integrating a Semantic Desktop with an Adaptive Hypermedia
authoring environment. In this section, we will introduce the concept of Semantic Desktop as well as
the main techniques involved: RDF, in section 2.2.1, and OWL, in section 2.2.2. We will also introduce
XSLT, which enables us to transform XML formats, such as RDF, into other XML-based formats, such
as CAF, see section 2.1.3.
The Semantic Web (W3C, 2001) is a web of data. There is a lot of data we all use every day, which is
not part of the web. For instance, I can see my bank statements on the web, and my photographs, and I
can see my appointments in a calendar. But can I see my photos in a calendar to see what I was doing
when I took them? Can I see bank statement lines in a calendar? Why not? Because we do not have a
web of data. Because data is controlled by applications, and each application keeps it to itself.
The Semantic Web is about two things. It is about common formats for interchange of data, whereas on
the original Web we only had interchange of documents. Also, it is about languages for recording how
the data relates to real world objects. This allows a person, or a machine, to start off in one database,
and then move through an ‘unending’ set of databases which are connected not by wires, but by being
about the same thing.
A Semantic Desktop is a Semantic Web enhanced desktop environment (Sauermann et al., 2005).
According to (Sauermann et al., 2005), the Semantic Desktop will be the driving paradigm for desktop
computing in the area of the Semantic Web. Based on the needs and expectations of users today, the
software industry will evolve to a future way of computing, Semantic Desktop computing (Sauermann
et al., 2005). One of the main building blocks for a Semantic Desktop is considered to be a Semantic
Desktop search tool, such as Beagle++ (Sauermann et al., 2005).
In the following sections, we will introduce RDF and OWL, the main techniques used in the semantic
web. We have looked into these techniques because of the Semantic Web character of the Semantic
Desktop. In the following sections, we will also show to what extent we used these techniques in the
end.

2.2.1. RDF / RDFS
RDF (W3C, 2006) is an abbreviation of the resource description framework. It is the main technique in
use for describing data in the Semantic Web, and therefore also in the Semantic Desktop.
RDF is a W3C recommendation for representing meta-data on the web (W3C, 2006). It enables the
encoding of structured meta-data in a machine-processable way. This enables the exchange of
information and means that the information can be made available to other applications then it was
originally intended for.
RDF is built out of subject-predicate-object triples. This can be written as P(S,O), for example, where
subject P has a predicate or property S with value O. This can also be represented graphically in the
way we see in Figure 3.

Figure 3 Graphical representation of RDF triple

Chapter 2 Background and related work

 14

RDF allows subjects and objects to be interchanged. Thus, any object from one triple can play the role
of a subject in another triple, which amounts to chaining two labelled edges in a graphic representation
(W3C, 2006).
RDF also allows a form of reification, in which any RDF statement itself can be the subject or object of
a triple. This means graphs can be nested, as well as chained (W3C, 2006).

RDF uses URIs (Uniform Resource Identifiers) to describe resources in terms of properties and values.
It can be represented visually as a graph (see Figure 3), but there also is an XML syntax, which enables
machines to process the information. An example of a RDF fragment in this XML notation is shown
below. There is not just one mapping of RDF to XML, different versions of RDF have slightly different
mappings. The example however, will show the currently most popular mapping. In the example
below, email name and title of a person called Eric Miller are show in RDF/XML.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rd f-syntax-ns#"
 xmlns:contact="http://www.w3.org/2000/ 10/swap/pim/contact#">
 <contact:Person rdf:about="http://www.w3.org/Peop le/EM/contact#me">
 <contact:fullName>Eric Miller</contact:fullName >
 <contact:mailbox rdf:resource="mailto:em@w3.org "/>
 <contact:personalTitle>Dr.</contact:personalTit le>
 </contact:Person>
</rdf:RDF>

We looked into RDF, due to the fact that the My Online Teacher Adaptive Hypermedia authoring
system MOT also has a description of its format in RDF. In Figure 4, this RDF description is shown.
This figure illustrates, for example, at the top right, that an entity called Lesson has two attributes, a
name and an id , that it roots in a Sub-lesson , and that is owned by a Designer . This is the
description of lessons created in MOT. The MOT system will be further introduced in more details
later in this thesis.

That MOT has a description in RDF format means that, although there was no implementation of MOT
authored content as RDF, it is clearly possible to represent it in this authoring environment as such.

Figure 4 RDF schema of MOT (Cristea, De Mooij, 2003b)

At the first glance, Beagle does not seem to use any RDF descriptions, but the Semantic Desktop
search does use RDF descriptions, as found in (Beagle++ website). Thus, the extended Beagle version
of the Semantic Desktop search, Beagle++ (Beagle++ website) does make use of RDF descriptions, for
storing its meta-data. It uses RDF because of its ease of harvesting and combining RDF data. See
Figure 5 for an example. In the figure, the Person entity at the left has an attribute name, which
represents the name of a person. The email address entity has a belongs to relationship with a person.
This shows that persons have a name and that email addresses belong to persons. All used entities are
described like this.

Chapter 2 Background and related work

 15

Figure 5 Graph of the email prototype (Chirita et al., 2005)

RDF makes no data modelling commitments. In particular, no reserved terms are defined for further
data modelling. RDF Schema (RDFS) lets developers define ontologies for their RDF data. In RDFS,
the kinds of objects to which predicates can be applied are defined. Some terms are pre-defined, such
as Class , subClassOf , Property . These predefined terms are used in the specific schema
description. RDFS also uses the RDF notation; with the difference that now there is an agreement on
the semantics. The RDF descriptions of both the MOT Adaptive Hypermedia authoring system, as
well as the Beagle++ Semantic Desktop environment (see Figure 4, Figure 5 respectively) are, in fact,
ontologies in RDFS description.

2.2.2. OWL
OWL (Web Ontology Language (McGuinness, van Harmelen, 2004)) is a W3C recommendation
designed for applications dealing with the semantics of information. OWL is defined as an extension to
RDF. It adds semantics to RDF, using pre-defined constructs. Therefore, it offers better support for
semantic processing than standard XML, RDF or RDF Schema do. The OWL syntax is an RDF/XML
syntax. Agreements upon the semantics enable reasoning over the semantic data (more on OWL
reasoning will follow). A full list of features can be found at (McGuinness, van Harmelen, 2004).
There are three different versions, with different expression power, and different complexity regarding
the computation of semantic inferences:

o OWL Lite supports a simple series of constraints, which are computable within polynomial
time.

o OWL DL (Description Logics) has more expressive power, while maintaining computability
of the results, but not necessarily in polynomial time.

o OWL Full is the complete OWL language; it relaxes some of the constraints on OWL DL and
makes available features which violate the constraints of Description Logic reasoners, and
therefore it does not guarantee computable results. OWL Full allows free mixing of OWL
with RDF Schema and does not enforce a strict separation of classes, properties, individuals
and data values.

OWL, being one of the key techniques in the Semantic Web (W3C, 2001), has the potential of
processing semantic data. This semantic data is the data stored in the OWL format. Rules can be
defined based on which reasoning can derive certain properties. An example can be transitivity. If we
have transitivity, and we know that a mountain bike is a sports bike, as well as that a sports bike is a
bike, it can be derived that a mountain bike is a bike. OWL reasoning (see below) can provide a method
of reasoning over the data present in the Semantic Desktop environment.

OWL reasoning
OWL reasoning provides a way to infer over semantic data. In a way, this is also provided by RDFS
schema inferences, but OWL reasoning can go beyond that, by applying instance inferences and
defining rules. As we find in (Bechhofer, 2003), reasoning in OWL is based on semantics. Using the
semantics, inferences about ontologies or ontology-members can be made. Reasoning can be done by
class inferences, instance inferences or using some rule set. OWL uses an open world assumption. This
means that everything we do not know is not automatically false, it’s just not described. For the
reasoning, the normal distribution rules, as known from the formal logic domain (see (Huth, Ryan,
2005)) hold.

Chapter 2 Background and related work

 16

Class inferences

Inferences based on classes are based on subclasses or on sub-properties. As an example, let us take
four classes: a driver, a bus driver, a vehicle and a bus. Bus is a subclass of vehicle, and bus driver
drives a bus, driver drives a vehicle, so we can conclude that a bus driver is a driver. These kinds of
inferences are also possible in RDFS schema inferences and can be used in our prototype.

Instance inferences

Inferences can also be based on instances. When a property takes a certain subtype, and there is an
instance which has this property, the instance must be of that subtype.
For example, we have two classes: a bus driver, and a bus. The bus driver drives an instance called
coach. The drives property of bus driver takes busses, so the coach must be a bus.

Rule set

In (Harth, Decker, 2004), we see that reasoning can also be done by applying a set of rules to the OWL
ontology. This is where OWL reasoning really goes beyond RDFS schema inferences, provided, of
course, that the rules are actually defined. In our prototype this is not the case, so using OWL with
OWL reasoning does not really add anything. If, however, a way is found to either generate or
otherwise obtain some rules, the use of OWL might be beneficial.
(Harth, Decker, 2004) describes how a set of rules in Horn format (see (Huth, Ryan, 2005)) is applied
to an OWL ontology. As we see in Figure 6, the result is a new, richer OWL ontology.

Figure 6 Applying inferences make the ontology richer

Because OWL has the potential of processing semantic data, we studied OWL in order to judge if the
data we are dealing with can be better processed with it. The data we used in our prototype, however,
was only available as RDF in the Sesame (Sesame website) store. It would be possible to transform
this RDF data into OWL data and apply OWL reasoning, but, because of missing rules and descriptions
in OWL, this would not go beyond RDFS inferences, which the Sesame repository already provides.

2.2.3. XSLT
XML representations can be transformed into another XML representations using XSLT (W3C,
2005b). In our prototype, we are using a common portable XML format, CAF (see section 2.1.3);
however, this is not a standard. RDF, which as we saw in section 2.2.1, is the main format in use for
storing data in the Semantic Desktop and Semantic Web, is a standard, and is represented via an XML
syntax (or in a graphical representation). XSLT can transform XML syntaxes into other syntaxes. This
other XML representation could again be an RDF description, or a CAF file. Thus, transforming RDF
descriptions into CAF descriptions as well as CAF descriptions into RDF descriptions is a relatively
easy process, provided, of course, that the RDF file offers the required information to construct a CAF
file from. All that is needed is an XSLT processor and an XSLT style sheet, of which an example is
given below. This example can transform a CAF file into a RDF file. The top element of a CAF file,
called CAF, is matched and processed. This processing is dictated by the structure of a CAF file. The
domain model part is selected, and every domain concept map is turned into <lesson:domainmodal
rdf:about="http://www.rexmedorum.demon.nl/{concept/name}">; where concept/name is the name of
the domain concept map described in the domain model part of the CAF file. In the same way,
concepts, as well as the goal model part, are processed.

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www .w3.org/1999/XSL/Transform"
xmlns:art="http://www.rexmedorum.demon.nl/articleSc hema.rdf#"

Chapter 2 Background and related work

 17

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax- ns#"
xmlns:lesson="http://www.rexmedorum.demon.nl/lesson .rdfs#">

<xsl:output method="xml" version="1.0" encoding="UT F-8" indent="yes"/>

<xsl:template match="/CAF">
 <rdf:RDF
 xmlns:art="http://www.rexmedorum.demon.nl/art icleSchema.rdf#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-s yntax-ns#"
 xmlns:lesson="http://www.rexmedorum.demon.nl/ lesson.rdfs#">
 <xsl:apply-templates/>
 </rdf:RDF>
</xsl:template>

 <xsl:template match="domainmodel">
 <lesson:domainmodal rdf:about="http://www.rex medorum.demon.nl/{concept/name}">
 <xsl:apply-templates select="concept"/>
 </lesson:domainmodal>
 </xsl:template>

 <xsl:template match="goalmodel">
 <lesson:goalmodal rdf:about="http://www.rexme dorum.demon.nl/{lesson/name}">
 <xsl:apply-templates select="lesson"/>
 </lesson:goalmodal>
 </xsl:template>

 <xsl:template match="concept">
 <lesson:concept rdf:parseType="Resource">
 <lesson:name><xsl:value-of select="name"/></l esson:name>
 <xsl:for-each select="attribute">
 <lesson:attribute rdf:parseType="Resource">
 <lesson:name><xsl:value-of select="name"/ ></lesson:name>
 <lesson:contents><xsl:value-of select="co ntents"/></lesson:contents>
 </lesson:attribute>
 </xsl:for-each>
 <xsl:apply-templates select="concept"/>
 </lesson:concept>
 </xsl:template>

 <xsl:template match="lesson">
 <lesson:lesson rdf:parseType="Resource">
 <lesson:weight><xsl:value-of select="@weigh t"/></lesson:weight>
 <lesson:label><xsl:value-of select="@label" /></lesson:label>
 <xsl:apply-templates select="link"/>
 <xsl:apply-templates select="lesson"/>
 </lesson:lesson>
 </xsl:template>

 <xsl:template match="link">
 <lesson:link rdf:parseType="Resource">
 <lesson:weight><xsl:value-of select="@weigh t"/></lesson:weight>
 <lesson:label><xsl:value-of select="@label" /></lesson:label>
 <lesson:linkPath><xsl:value-of select="."/> </lesson:linkPath>
 <xsl:apply-templates select="lesson"/>
 </lesson:link>
 </xsl:template>

</xsl:stylesheet>

Chapter 3. Integration of an Adaptive Hypermedia and Semantic Desktop environment

 18

3. Integration of an Adaptive Hypermedia and
Semantic Desktop environment

As we stated before in our introduction chapter, authoring of Adaptive Hypermedia is difficult and time
consuming. We defined two main problems which are identified as causing this difficulty: the lack of a
usable interface and the lack of authoring assistance. In this thesis, we are mainly concerned with
providing authoring assistance. Our prototype will be an extension of an existing system, which has
been improved with regards to usability.
One can think of many different ways to assist an author. We believe, as we argued in the introduction,
that it will be useful for authors, if they can create basic lessons (as is minimally expected from them
even in the linear world of authoring) and add adaptive material semi-automatically to this lesson from
their desktops. As the author is usually an expert in the field, his desktop is a good source for relevant
material of good quality. In a motivating scenario we showed before that indeed an author can create a
material for more advanced users out of a basic one; clearly, there might be other possibilities, such as
creating extra background knowledge for beginners, for instance.
In this chapter, we will introduce our method for providing this authoring assistance; the technical
details regarding our prototype can be found in chapter 4. This is done by using the same educational
setting as in the example in section 1.3. In section 3.1 we give a global overview of our approach. How
content, in the educational setting lessons can be edited, can be seen in section 3.2. Finding of related
meta-data is described in section 3.3; and, finally, in section 3.4 we show the resulting lesson. In the
rest of this chapter we assume a scenario like the one in section 1.3.2, where a teacher wants to create a
basic non-adaptive lesson, and turn this into an adaptive lesson, by adding related resources for
advanced students. However, the same technique can be used to enrich semi-automatically and set the
basis for adaptations for other types of presentations, such as news, commercial sites, etc.

3.1. Global overview
Our approach integrates two environments, an Adaptive Hypermedia environment and a Semantic
Desktop environment. The Adaptive Hypermedia environment we have chosen provides a web-forms
based interface for editing Adaptive Hypermedia. The Semantic Desktop environment we chose
provides a semantic search, which can find related resources. ‘Related’ means here that a resource on
the desktop contains some of the keywords - or a part of the title -of a concept in the Adaptive
Hypermedia environment. In this chapter, we will illustrate the different steps an author needs to take
to create a basic lesson and turn it into a more advanced adaptive lesson. In chapter 4 we will describe
how the prototype achieves this, in more detail.

3.2. Editing a lesson
For enriching a lesson, a basic, linear lesson needs to be created first. Assume that a teacher wants to
create a basic lesson on Adaptive Hypermedia. The teacher creates this basic lesson using the My
Online Teacher (MOT) Adaptive Hypermedia system for authoring, of which we give other details
later on in this thesis. We enabled MOT to export lessons to a CAF file, which can afterwards be
enriched with our enricher application. The new lesson can be then imported back into MOT, by using
an extension to the MOT system we defined. By using CAF, the enrichment process is more generic, as
we could also import the enriched file into any other system which uses the CAF file format.
To envision the authoring process in MOT before the enhancing step with the enricher, assume, for
simplification, the easiest situation, in which a teacher starts with a system containing no content. The
teacher will login into MOT, choose the option to create a new concept map and select a name and
attributes he wishes to use (see Figure 7). The figure also shows that the teacher can choose the set of
attributes which will define each domain concept in the new concept map.

Chapter 3. Integration of an Adaptive Hypermedia and Semantic Desktop environment

 19

Figure 7 Creation of a new domain concept map

After creating this new domain concept map, the teacher sees a screen as in Figure 8. He has created a
domain concept map called Adaptive Hypermedia with one root concept, called root. If, as in Figure 8,
the teacher has selected the root concept, he can edit its attributes, or add sub-concepts to the root
concept. The teacher decides to first change the title of the lesson into Adaptive Hypermedia (see
Figure 9). As can be seen, for every attribute, resources can be uploaded; text files will be added as
text, other files as links.

Figure 8 A newly created lesson called Adaptive Hypermedia

Chapter 3. Integration of an Adaptive Hypermedia and Semantic Desktop environment

 20

Figure 9 Changing the title of the lesson to Adaptive Hypermedia

After changing the name of the root concept, the teacher adds a sub-concept called What to adapt to,
(see Figure 10). The title attribute for this sub-concept will now automatically be What to adept to. All
other attributes are empty. The attributes can be changed in the same way as with the root concept. In
this way, a teacher can obtain a simple hierarchy of domain concepts.

Figure 10 Adding a sub concept called What to adept to to the root element of the lesson

Now, the teacher selects the option ‘convert to lesson’, see Figure 11, and gives the lesson a name.

Chapter 3. Integration of an Adaptive Hypermedia and Semantic Desktop environment

 21

Figure 11 Convert a domain concept map into a lesson

The teacher proceeds and creates a whole basic lesson on Adaptive Hypermedia in this way. The
student preview of the created lesson looks like in Figure 12. We see the concept What to adapt to? . In
our sample case, the concept only features a textual description and does not have any figures,
exercises, introduction etc. (although this would be possible).

Figure 12 Basic lesson on Adaptive Hypermedia

Back on the teacher’s home screen, he can export the lesson, see Figure 13. The exported CAF file can
be used by our enricher to add resources to the lesson, as we will see in the next section.

Chapter 3. Integration of an Adaptive Hypermedia and Semantic Desktop environment

 22

Figure 13 Exporting a lesson to a CAF file

The intermediate CAF file format is particularly useful, because its enables teachers to transport
lessons between MOT systems at different locations or different systems which support the CAF file
format. This enables the author to create a lesson at one place and review the result, before it gets
delivered to the public. Another benefit of the use of this CAF file, is the fact that, instead of MOT, as
said, any system which supports importing and exporting of CAF can be used, which means that any
given system can be made usable for our approach by defining an import and export from and to CAF.

3.3. Searching for related resources
On a Semantic Desktop we need meta-data for everything present. In the current context, we are
mainly concerned with articles in PDF files, browser history, emails etc. We will describe this in more
detail in chapter 4. Which files and thus which meta-data is present on a teacher’s computer is, of
course, dependant on what the teacher does on his computer. If, however, the computer he is authoring
the lesson on is the same computer as the one on which he performs his everyday work, the computer
should contain a wealth of resources related to the teacher’s field of expertise. Assuming that a teacher
will usually author a lesson on a topic of his own expertise, there is enough material available on the
teacher’s desktop relevant to the lesson he is creating. Our prototype uses the Beagle++ desktop search
tool, which provides a Semantic Desktop environment. We will introduce more technical details in the
next chapter. The prototype uses meta-data describing resources in more detail then normal file system
attributes do (see, for example, Figure 14). In the figure, a file is not only a data collection with date
stamp and size, but, additionally to this, it can be classified as a Publication , and extra data can be
found, such as the Conference at which this publication appeared.

Figure 14 Example of meta-data

Meta-data can provide very useful information; such as, e.g., the author of a paper. Another meta-data
example is the place where the resources were retrieved from (this is useful, for example, for browser
history) and where and when a resource, such as an article, was presented. This additional information
can be used while searching. Moreover, this information can be added to a lesson, together with the
article it describes, as extra information for the (more advanced) students.

In the rest of this section we will describe the process of searching for related resources and, aided by
meta-data, adding them to a lesson.

Chapter 3. Integration of an Adaptive Hypermedia and Semantic Desktop environment

 23

3.3.1. Searching related resources aided by meta-da ta
Beagle++ is a Semantic Desktop search for Linux. It keeps indices about all resources on the desktop,
and keeps these indices up to date. This means that instead of actually searching through the desktop,
the indices can be used for searching. We assume that a good way to find related resources is to match
the resources and the titles and keywords of the concepts present in the lesson with the resources
available on the desktop. The title and keywords of every concept in a lesson are taken and used as
keywords for searching. The search is performed in the semantic data of the Beagle++ Semantic
Desktop environment. More details about how matching is actually computed will be introduced in the
next chapter.
Searching via Beagle++ can be done via a search interface, see Figure 15. However, in the case of our
prototype, the searching is integrated with the adding of related resources, as shown in the next section.
The teacher will never actually use the standard search interface of Beagle++ for the process of turning
a standard non-adaptive lesson into a more advanced adaptive lesson.

Figure 15 Searching with Beagle

3.3.2. Adding related resources to a lesson

Resources can be semi-automatically added to a lesson by our enricher application. The application is
started by the teacher. The teacher sees the interface in Figure 16.

Figure 16 Enricher opening a lesson for enriching

The teacher can decide how he wants the added resources to be labelled and weighted. The labels and
weights are used, as said, by the adaptive strategy in the LAG language, see 2.1.2 to actually semi-
automatically create adaptive courseware; so the labelling and weighting choice depends on which
particular strategy the teacher uses (and vice-versa – his choice limits the types of strategies that are
applicable). In our example, the teacher decides to use an adaptive strategy for advanced versus
beginning learners and labels the inserted material accordingly with ‘advanced’. The teacher can also
make a few other choices; for instance, choose which of the two available ranking methods he wants to
use, i.e., if he wants to use a true set computation for keywords and if he wants hierarchical information
to be added as sub-concepts. We will describe the technical details of these choices in chapter 4.

Chapter 3. Integration of an Adaptive Hypermedia and Semantic Desktop environment

 24

After making his decisions on these options, the teacher clicks Process CAF file, to open a lesson CAF
file. Opening the lesson may take a bit of time, since possible material for enriching is retrieved whilst
opening the CAF file. It is necessary to retrieve possible resources, before the author selects what he
wants to add, because possible resources have to be ranked first and then shown to the author. This
ranking can only be done if the resources are retrieved. It would be possible to do the retrieval
separately from opening the CAF file, but that would mean that the author would have to press a ‘select
resources’ button after opening. As going on to the selection of resources is the only possible next step,
a step is saved by doing the retrieval whilst opening the CAF file.
After opening the CAF file, the teacher will see the screen in Figure 17.

Figure 17 Enricher selecting common attributes

The teacher is now given a tree view with the opportunity to select some attributes. These attributes are
common attributes, which exist for all possible relevant resources that can be added to the lesson, and
can be extracted from Beagle++. The teacher selects here the attributes he wants to include for all these
resources, to save the work of manually selecting the same attribute for every resource. For instance, he
might want to add for all articles their presentation date and the conference at which they were
presented; but might not be interested to add ranking information about the conference or article (this
being less interesting for the flow of his advanced course).

After having made his choice, the teacher presses the Select standard attributes and proceed button.
Now, the teacher gets another tree view, as we see in Figure 18. The teacher can select the actual
resources he wants to add to the lesson. This step is needed so that the teacher can control what will be
added to the lesson and what not, insuring that private files, for instance, stay private. By unfolding a
resource, the teacher can refine and change which attributes get added to the lesson. By default, only
the resources which the teacher selected in the previous step are extracted for all resources. However, if
individual articles should be described with more attributes than the default, the teacher has the choice
of doing so, here.

Chapter 3. Integration of an Adaptive Hypermedia and Semantic Desktop environment

 25

Figure 18 Enriching selecting the resources to be added

The last step the teacher has to perform now is saving the new lesson, by pressing the save tar archive
button. When saving a CAF file, a tar archive containing the CAF file and all resources selected will
also be generated. Instead of the CAF file, this tar archive can also be imported, which will
automatically put all resources in place for the links to function properly.
It depends, of course, on the number and type of resources the teacher has on his desktop, if he will be
presented with a great deal of useful resources, or not. An important strategy to improve the options a
teacher gets however, is adding enough good quality keywords to the basic course, as keywords are
basically what is searched for among the resources on the desktop.
If the teacher wants to achieve the adaptation, it is important for the teacher to first choose a strategy
and see what labels and weights are used by this strategy for advanced users, or any other group the
teacher wishes to target. The teacher should thereafter set sensible weights and labels corresponding to
the selected adaptation strategy.

3.4. The resulting lesson
Our approach resulted in a richer lesson for the benefit of advanced users. In this section, we will
compare the basic lesson we started with, with the more advanced lesson, and show that indeed our
approach can provide useful assistance to a teacher.
In our example, the teacher started with creating a basic lesson on Adaptive Hypermedia. A preview of
what this looks like to students has been previously shown in Figure 12. The teacher now has exported
the lesson to an intermediate CAF file and enriched it with the enricher as described in this chapter.
The resulting lesson is an adaptive lesson, in which the basic lesson is show to beginning students and
the more advanced lesson to advanced students. What the lesson looks like for beginning students is
shown in Figure 19.

Chapter 3. Integration of an Adaptive Hypermedia and Semantic Desktop environment

 26

Figure 19 Beginning student’s view on the enriched lesson

We see in Figure 19 the student preview of the concept What to adapt to?. The concept only features a
textual description and does not have any figures, exercises, introduction etc.

Chapter 3. Integration of an Adaptive Hypermedia and Semantic Desktop environment

 27

Figure 20 Advanced student’s view on enriched lesson

The advanced students’ version is presented in Figure 20. Here, we see the concept What to adapt to?.
The concept only features a textual description and does not have any figures, exercises, introduction,
etc. We also see here two new concepts, ‘Adaptive Authoring of Adaptive Hypermedia.’ and ‘From
Adaptive Hypermedia to adaptive Web’, which offer links to related resources. These are the added
articles, together with some meta-data describing them. E.g., we can see where these papers where
presented and in what year.
As the two figures show, there is a clear difference between the view for beginning students and the
one for advanced students. The advanced students get two extra links to related articles, ‘From
Adaptive Hypermedia to adaptive Web’ and ‘Adaptive Authoring of Adaptive Hypermedia.’, at the
bottom of the what to adapt to concept. The can navigate to the actual articles by following the links.

What is important here to note is that the author has basically only created a linear course, just as he
would do for any e-learning environment without adaptivity, and the system has guided him step-by-
step into easily transforming this course into an adaptive one, with two alternatives: one for beginner,
and one for advanced students. By changing the applied adaptation strategy (which the author can reuse
as created by other specialists) and the labelling, different effects of adaptation can be achieved.

Chapter 3. Integration of an Adaptive Hypermedia and Semantic Desktop environment

 28

In this chapter we have described our approach of integrating an Adaptive Hypermedia environment
and a Semantic Desktop environment. In chapter 4, more technical details regarding the prototype
which we made for our approach are given. We have seen that indeed it is possible to provide teacher
assistance by integrating an Adaptive Hypermedia environment with a Semantic Desktop environment.
We saw that a teacher can create a basic lesson for beginning students and can enrich this (semi-)
automatically with resources from his desktop for advanced students, provided he has enough relevant
material on his desktop, of course.

Chapter 4. Prototypic Adaptive Hypermedia environment

 29

4. Prototypical Adaptive Hypermedia environment
In this chapter we present our solutions to the lack of help for authors wanting to author Adaptive
Hypermedia. As we showed in the introduction, authoring of Adaptive Hypermedia currently is
difficult and time consuming. There are two major issues, which are considered to be the main causes
for this: The lack of a highly usable authoring interfaces and the lack of authoring assistance. In this
chapter we will show how we provided authoring assistance by integrating a Semantic Desktop
environment and an Adaptive Hypermedia environment. As we saw in chapter 1, MOT was selected as
authoring environment and Beagle++ as Semantic Desktop environment. These are the environments to
integrate our prototype of the solution with.

In section 4.1, we introduce these environments in more detail. We will show why we selected MOT as
an Adaptive Hypermedia authoring environment and describe it in more detail in section 4.1.1. Section
4.1.2 will give details as to why we choose Beagle++ as our Semantic Desktop environment for our
prototype and will introduce it in more detail. In section 4.1.3, more information about the Sesame
RDF data store can be found, which in our prototype is used as the main way to link both
environments, by means of an enricher program.

Section 4.2 shows how the meta-data is enriched. Here, the theory behind enriching lessons with meta-
data, and the meta-data format of both environments are described. In section 4.3, we present a
workflow, of how this meta-data enriching is actually achieved, in a more step-by-step description; we
also show how the authoring environment can take advantage of it. The section begins with an
overview of the steps necessary to enrich a lesson, and describes each of them in more detail. Here we
will also see that, in turn, the Semantic Desktop environment can take advantage of later manual
adaptations by the author. Semantic data is likely to evolve over time and not stick to the exact same
schema, as new information may be needed and evolving insights may demand small structural
changes. Section 4.4 describes our approach to this issue.

The first of the two major issues, the lack of a usable interface, or in some systems, the total lack of an
interface, will also be addressed shortly, and we will also show how our approach was integrated with
the particular solution defined in (Saksena, Cristea, 2006), in section 4.5.4.
As we implemented a prototype of the integration between an Adaptive Hypermedia authoring systems
and a Semantic Desktop environment, in section 4.5 the process of the implementation is described and
in Appendix A an installation guide is provided, to enable the reader to install the prototype and try it
out.
Finally, section 4.6 is a short summary of how the approach solved both the issue of poor usability, as
well as the issue of lack of authoring assistance, and perform the integration.

4.1. Selected authoring- and Semantic Desktop
environments

In this section, we will be presenting the Adaptive Hypermedia Authoring environment and the
Semantic Desktop environment which we have chosen for our prototype. In section 4.1.1 we will
introduce MOT and motivate our choice for MOT as the authoring environment. In section 4.1.2 we
will introduce Beagle++, and give a motivation for choosing Beagle++ as the Semantic Desktop
environment in our prototype. The Sesame RDF store, which is important in linking MOT and
Beagle++ together, is described in section 4.1.3.

4.1.1. My Online Teacher (MOT)
MOT (Cristea, De Mooij, 2003) was constructed based on MyET (MyET website) and on the three-
layer model for authoring adaptation, as introduced in (Cristea, Aroyo, 2002). The three-layer model
basically contained a conceptual hierarchical layer (of atomic and composite concepts, built of a
number of attributes), a lesson layer, dealing with alternative presentation of contents at attribute level
or above, and a third layer of student adaptation and presentation adaptation. This structure is in
conformity with the requirements of W3C towards the third generation Web, called the Semantic Web
(Berners-Lee, 1998). Further on, this model was refined into the LAOS model (see section 2.1.1), with
a domain model, a goal and constraints model, a presentation model, a user model and an adaptation
model. MOT is a demonstration of the functioning of the first two layers (in both models), the
conceptual hierarchical layer and the lesson layer. This system has some commonality with DCG, the

Chapter 4. Prototypic Adaptive Hypermedia environment

 30

dynamic courseware generator (Vassileva, Deters, 1998). However, although dynamic generation of
courses is used, a MOT course is again adaptable to the student, conform to a user model. At the
student adaptation and presentation adaptation layer this system should be able to interface with AHA!
(De Bra et al., 2002) and some other Adaptive Hypermedia interface tools, but should also exploit
different adaptation granularity levels, as defined in (Cristea, De Bra, 2002): direct adaptation
techniques, medium level adaptation techniques (adaptive tactics, as demonstrated in (Calvi, Cristea,
2002)) and high level adaptation techniques (adaptive strategies) (see also section 2.1.2 on the
adaptation layer).
The edge of research AHS over classical Intelligent Tutoring Systems (ITS) (Brusilovsky et al., 1996)
relies on their simplicity: they contain a simple domain model, user model (usually an overlay model of
the domain model), aimed at a quick response, which is extremely beneficial in the speed-concerned
WWW environment. A great advantage of MOT over other Adaptive Hypermedia authoring systems is
its relatively simple interface with web-forms. This interface has been even recently improved, while
tackling usability issues (Saksena, Cristea, 2006). This makes it possible for authors, who are not
experts in the field of adaptation, to work with the system, after some short-term familiarisation, but
without extensive training.
Another factor in our choice was the fact that there was a meta-data schema available for MOT, which
suggests working with semantic data should be possible. Indeed, this proved possible, and thanks to
this meta-data schema, completing the cycle, and enabling the Semantic Desktop environment to take
advantage of manual additions by the author, was possible as well.

The MOT database
In Figure 21 an UML overview of the database used by MOT is given. It allows constructing complete
domain concept maps (conceptual hierarchical level) and lessons (lesson level), and storing the results
in a MySQL database.
The system can be used by a course designer (teacher) that creates the adaptive course. S/he should be
able to compose lessons based on concepts from a concept map. Therefore s/he should be able to
construct such a domain concept map, or to use an existing one.
The database diagram can be divided into two parts: the concept domain, formed by the left side of the
diagram, and the course (or lesson hierarchy) on the right side of the diagram. These two parts are
connected by means of the relation between the concept attribute and the sub-lesson.

Chapter 4. Prototypic Adaptive Hypermedia environment

 31

Figure 21 MOT database-diagram

The concept domain

The concept domain is represented by a domain concept hierarchy. A composite concept is made of
one or more sub-concepts. The leafs of the tree are atomic concepts. Each concept (including the
composite ones) contains concept attributes. These attributes represent pieces of information about the
concept they belong to, but they have no independent semantic meaning. They are semantic
annotations or labels for the domain concept (Berners-Lee, 1998). Different types of domain attributes
are possible, marked by the different attribute instances in the diagram. For domain concept attributes,
some pre-defined attribute slots (such as title, keywords, introduction, explanation, pattern, and
conclusion) were to be used, based on LAOS (Cristea, De Mooij, 2003b), but also other types were to
be allowed.

Domain concept attributes can be related to each other. Such a relation, characterized by a label and a
weight, indicates that their contents treat similar topics. There is also a feature of calculating
relatedness relations between domain concept attributes.

Exercises should have been modelled as special concepts, because they have their own hierarchical
structure within the greater concept structure, while they actually belong to one (non-exercise) concept.
The idea is that not only composite exercises can be made of sub-exercises, but also, that exercises can
be labelled similarly to concepts, and can have weighted and labelled relations between them.

Chapter 4. Prototypic Adaptive Hypermedia environment

 32

As an example, the domain concept hierarchy structure of the main composite concept ‘Neural
Networks I’ can be seen in the left frame of Figure 22. This composite domain concept is made of the
sub-concepts ‘NN Introduction’, ‘Discrete Neuron Perceptron’, etc., which are also composite domain
concepts themselves. The figure shows a screenshot of a moment where the designer has chosen to
view the composite domain sub-concept ‘Mathematical background of Discrete Perceptrons’ via the
path ‘Neural Networks I’ -> ‘Discrete Neuron Perceptrons’ -> ‘Mathematical background of Discrete
Perceptrons’. The latter is composed of atomic concepts, such as ‘Definition Linearly Separable Set’,
‘Theorem of classification for one-layer perceptron’, etc., and attributes. In the right frame of Figure
22, the domain attributes components list of this selected composite domain sub-concept can be seen.
They are the standard domain attributes, such as ‘title’, ‘keywords’, etc., but also non-standard ones
such as ‘exercise’. In fact, any number of non-standard attributes can be added via the ‘[add attribute]’
button in the right frame of the figure.

Figure 22 Hierarchical domain structure and attributes: predefined and others

Figure 22 also shows the owner (and creator) of this concept map in the header part of each frame as
being ‘Teacher 1’.
If the teacher who is accessing this domain concept map is also its owner and creator, he can edit the
attributes, as is shown in Figure 23. However, teachers can re-use other teachers’ materials, directly by
copying what is of interest into their domain concept maps (or lesson maps) for their courses, or by just
linking their course/lesson to the other courses. In the latter case, the teachers can only edit the
connection (pointers or links), but not the contents of the lesson attribute. In this way, propriety and
responsibility issues can be handled.
In Figure 23, ‘Teacher 1’ has selected the atomic sub-concept ‘Definition dichotomy’ of the previous
composite concept, and afterwards one of its predefined obligatory attributes, ‘text’. This is a special
attribute, in the sense that it might still be regarded as having a semantic unity, although this is actually
the semantic unity at (atomic) concept level. Note that this rudimentary implementation treats
multimedia objects the same way as text, as long as they are given by their pointers (addresses).

��������� This is not relevant
in this conext.

Chapter 4. Prototypic Adaptive Hypermedia environment

 33

Figure 23 Attributes editing and reading

The lesson

The lesson level repeats the information contained at the concept level, now modelled based on
pedagogical goals. Some similarity with the concept structure is still visible, in the sense that a course
(composite lesson) contains sub-lessons, which can contain in turn sub-lessons, hence enforcing a
hierarchical structure. Sub-lessons within a lesson can be OR-connected (as lesson alternatives) or
AND-connected (all parts are obligatory). A lesson contains therefore holders for OR-connected sub-
lessons (L-OR-Conn) and/or holders for AND-connected sub-lessons (L-AND-Conn), which contain
the lesson attributes. These lesson attributes can be just plain pointers to sub-lessons. The holder can be
said therefore to contain the actual sub-lessons. The difference to domain sub-concept sets is that the
sub-lessons have an imposed order (they are ordered sets, or lists).
Moreover, a lesson attribute can contain, next to - or instead of - sub-lesson holders, one or more
domain concept attributes. The latter represent the link with the concept domain. Therefore, the leafs of
the lesson hierarchy are attributes or ordered sets of attributes of the domain concepts. The idea is that
the lesson puts pieces of information that are stored in the concept attributes together in a suitable,
default way for presentation to a student.

The lesson level processing is show in Figure 24. Lessons are obtained from the domain concept map
level, at the present time via selection of attributes that are to be included in the final lesson. These
attributes are to be added selection mechanisms that should be triggered by the user model, as dictated
by the third level of adaptive authoring, the ‘student adaptation and presentation adaptation’ layer. A
primitive adaptation labelling is already possible, in the sense of adding AND-OR connections to the
lesson building blocks. OR connections also have weights and labels. For instance, the group ‘Neural
Networks I – first attempt’ is formed of an OR connection of subgroups, out of which only two are
visible: ‘Neural Networks I’ with 15% weight and group (1)-(2) with 20% weight. The interesting point
here is that these weights can mean anything the author wants: importance, relevance to a certain
subject, knowledge gain, etc. Some of the subgroups of (1)-(2) are AND groups, such as group (1)-(2)-
(5), containing ‘title’ and ‘text’ attributes of a concept. The teacher can create this lesson from a

Chapter 4. Prototypic Adaptive Hypermedia environment

 34

domain concept map simply by selecting which attributes out of the predefined ones should enter the
lesson. Then, the system automatically generates this lesson, by copying from the whole concept
hierarchy that was selected (so from each composite concept, sub-concept, etc.) the given attributes. By
default, all attribute groups are AND attributes, but the teacher (designer) can easily change them into
OR ones and attach weights to them by pressing the [AND] button next to the group.

Figure 24 Lesson view

The defaults automatize and facilitate the authoring process. The attached labels can be used also for
many purposes, but are mainly there to show the meaning of the corresponding weight.
Besides being able to generate lessons as above, the teacher can add concept attributes from different
concept maps, edit the lesson, delete parts, etc.
The view in Figure 24 is handy for connecting and editing a lesson, but it was considered that it is also
important for the teacher in his creation process to see the final product of his work, or in other words,
the student view. As this is a material for an adaptive course, the student view is not uniquely
determined. According to the user model decisions (based, for example, on an overlay model of the
lesson domain, with knowledge values associated with each sub-lesson, such as is used by AHA! (De
Bra et al., 2002)), different parts of the lesson can be shown to a student.
However, for the moment, there is an approximate student view, containing ALL alternatives existent
in the lesson, as can be seen in Figure 25. This view does not take into consideration any complex
colour scheme, for instance, and is only aimed at giving a quick glance to the author of the student
input created.
The figure shows therefore the formatted contents of the concepts ‘NN Introduction’ and ‘The Von
Neuman computer versus the human brain’ with their selection of attributes, such as ‘keywords’,
‘pattern’, ‘explanation’, ‘conclusion’ and their respective contents.
Note that the main attribute, ‘text’, as well as its contents, was not included (as it was not selected for
this particular lesson; unlike the example in Figure 24, which is based on the same domain concept
map).
This lesson (Figure 25) can form, for instance, an introductory course for beginners, or an information
leaflet for people wanting to get some quick information about the course, without going into many
details.

Chapter 4. Prototypic Adaptive Hypermedia environment

 35

In such a way, several lessons (Figure 24,Figure 25, etc.) can be created based on the same domain
concept map, or on a combination of domain concept maps on related topics.

Figure 25 Student view

4.1.2. Beagle++
Beagle is a search tool for Linux. It searches on the author’s computer for documents, emails, and other
types of resources and automatically generates meta-data every time a file is added or changed. This
automatic generation of meta-data is what we need for our prototype. We want to use automatically
generated meta-data, so that basic content can be enriched with adaptive content from the desktop. A
great advantage of choosing Beagle++ for this is that the Beagle++ architecture is actually designed to
allow extensions to and use of its semantic data. It does this by storing the semantic data in a Sesame
RDF store, which can be accessed over a HTTP-connection. By the use of a password, however,
making the complete contents of a user desktop publicly available is prevented.

The standard Beagle architecture
The Beagle search tool for Linux searches on the author’s computer for documents, emails, browser
history, chat logs, source code, images, music files and applications and reports matches found. It is
written in C#, and uses mono and gtk# (Chernov, 2005).
The BEAGLE system consists of two modules, the Beagle demon and the BEST interface. The Beagle
demon takes care of indexing the data as well as retrieving the data. Beagle uses an Inotify thread to
react to changes in the file system and a query driver to accept queries over its data. The Best query
interface provides the users with an interface in which they can enter their search queries and in which
the results are displayed. Both modules are connected via a bus, called DBus, which allows them to
communicate.

The Beagle architecture as extended in the Semantic Desktop search
The Semantic Desktop search extends Beagle. Meta-data, describing the resources on the desktop, is
kept and used while searching the resources. Therefore, the indexing mechanism is extended, as well as
the searching mechanism. In Figure 26, both adaptations are shown. The left part shows how the
indexing mechanism is extended. When a file is created or changed, we see that the appropriate handler
is called and the Lucene index is updated, just as in the standard Beagle tool. However, extra to this, a
meta-data generator is called. The generated meta-data is stored in the meta-data index. The right part
shows how the search process is adapted. After the search keywords are retrieved, not only the Lucene
index is searched, as in the standard Beagle system, but also the meta-data index. After that, the result
is displayed.

Chapter 4. Prototypic Adaptive Hypermedia environment

 36

Figure 26 Extending Beagle with Meta-data Desktop Search

4.1.3. Sesame
Sesame is used by Beagle++ for storing its RDF meta-data. This allows extensions to and use of
Beagle++’s semantic data, because Sesame made the semantic data easily available to other
applications. As mentioned, however, a password prevents unwanted access.
Sesame is a generic architecture for storing and querying both RDF and RDFS information (Broekstra
et al., 2002). Sesame is aware of the RDFS semantics, and provides a web-interface (see Figure 27) as
well as a Java API for querying its RDF data in the SeRql query language, an RQL-based query
language.
Sesame (Sesame website) is used for the meta-data index mentioned in section 4.1.2. Upon creation
time of a repository, one can choose if one wants an inferencing repository. An inferencing repository
will apply schema inferences, if applicable.
Because of the abstraction from the details of any storage system, it is easily portable to a large variety
of storage systems, including the main memory and database systems, or remote storage spaces on the
web. We selected to use MySql because we can use it free of charge and can easily install it on
Windows and Linux alike.

Through these interfaces one can query the store using the SeRql query language, which resembles
SQL for a great deal. Queries look like this:

SELECT x FROM {x} p {y} WHERE condition

Here x is the object to select, y the attribute and p the relationship (see section 2.2.1 for more
information on RDF syntax). For example, a valid query is:

SELECT Title FROM {Title} art:title {“Activity-Base d Meta-data for Semantic Desktop

Search”}

The Sesame architecture defines a server-based application. This enables local, as well as remote use,
for storing and querying semantic data. Communication can be done via any protocol, taking advantage
of the abstraction layer. Currently, the Beagle++ system uses the HTTP protocol. The server-based
nature of Sesame allows remote access, but it also provides a security logon mechanism, which is an
important feature in the case of Beagle++, since it prevents making the complete content of a users
desktop publicly available.

Chapter 4. Prototypic Adaptive Hypermedia environment

 37

Figure 27 Sesame web-interface

4.2. Enriching Meta-data
As we saw in section 1.3.2, we can integrate an Adaptive Hypermedia environment and a Semantic
Desktop environment via the use of meta-data from both environments.
The following two sub-sections describe these two kinds of meta-data in more detail. The prototype
which was developed will have to deal with both meta-data types. The meta-data of the Semantic
Desktop environment is important, because that is where we want to find our relevant content. The
Adaptive Hypermedia authoring systems is also important, as we need to know where we can add
relevant content.

4.2.1. Input Meta-data Schema
The Beagle++ (Beagle website) desktop search system generates and stores additional meta-data. Such
additional meta-data automatically annotates material the user has read, used, written or commented
upon. Three such obvious sources of desktop behaviour information are:

o files on the desktop,
o Internet browsing and files stored from the Internet, and
o mail exchanges and files stored from mail attachments (Chirita et al., 2006), (Ghita et al.,

2005).
Figure 28 shows an instance of this ontology depicting files annotated with their publication meta-data,
file system attributes, web history, as well as the mail context (e.g., the fact that files are attached to
specific e-mails).

Chapter 4. Prototypic Adaptive Hypermedia environment

 38

Figure 28 RDF schema of meta-data from Beagle++ (Beagle++ website)

In Figure 28, the ellipse in the upper left part describes emails (with subject, body, sender and status
attributes) and their attachments. The ellipse in the upper right part describes publications written by
several authors at different conferences (with title, publication year, etc.). The ellipse in the lower left
part shows web cache history representation (web pages visited and dates of visits). Finally, the ellipse
in the lower right part of Figure 28 describes files that are saved on a person’s desktop, with their name
and specific directory. Files on the desktop may have been saved via any of the other three processes
(from emails, from websites, or from conferences), so an attachment entity and a file entity may refer
to the same object.

4.2.2. Output Meta-data Schema

These files and meta-data are however not enough to generate a complete course. Specifically, we have
to add information about the hierarchical structure and order of the material, in the context of a lesson,
as well as additional pedagogical annotations, describing which students the material is best suited for
(e.g., beginner versus advanced). Figure 29 shows this target schema, as defined in MOT (My Online
Teacher (Cristea, De Mooij, 2003)), an Adaptive Hypermedia authoring system. The schema describes
two models used in the Adaptive Hypermedia authoring paradigm: the domain map (left side of Figure
29) and the lesson (right side of the figure).

Chapter 4. Prototypic Adaptive Hypermedia environment

 39

Figure 29 RDF Schema of MOT .

A domain map is composed of a hierarchy of concepts. Each domain concept has domain concept
attributes, containing or linking to e-learning content alternatives describing the same concept. In
addition to the hierarchical model, domain concepts can also connect to related concepts.
A lesson is composed of a hierarchy of sub-lessons. The lesson represents a filtered, pedagogically
labelled, weighted and ordered version of the concept attributes (see the relation between sub-lessons
and concept attributes). For more information on MOT see section 4.1.1.

4.3. Transformation workflow
Beagle++ stores all meta-data in the Sesame RDF database (Chirita et al., 2006). All Beagle++
components, which generate meta-data (for example, the email, publication, web cache and file meta-
data generators) add the meta-data to this database. All Beagle++ components which use meta-data (for
example, the search and indexing module, the ranking module or the browsing modules) retrieve their
data from this repository, and, in some cases, write back new data (such as the PageRank value for
documents or other resources).
It is easy to accommodate additional modules in this environment by writing appropriate interface
components, which read and write from this repository. This is what we have done for MOT (Cristea,
De Mooij, 2003), (MOT website), as described in this paper. For our scenario, we have focused on the
semi-automatic addition of articles stored on the user’s desktop to a MOT lesson (Cristea, De Mooij,
2003). In MOT, this addition is done to an existing lesson. Based on his pedagogic goals, the author
can process the data, by changing labels and weights, and adding other information on the article. After
this enrichment, the lesson can be imported back into the RDF store. We use CAF (Common
Adaptation Format (Cristea et al., 2005b), a system-independent XML exchange format) in order to
simplify the transformation process from RDF to the MOT MySql storage format.

Chapter 4. Prototypic Adaptive Hypermedia environment

 40

Figure 30 Schematic overview of transformation workflow

In Figure 30 we see a schematic overview of the system. The bold parts, the MOT authoring system as
well as the Beagle++ Semantic Desktop environment, already existed. The highlighted parts, the
import, export and enriching of a lesson as well as the export of a lesson as RDF, had to be
implemented. The implementation will be described in more detail later on in this chapter. In the
remainder of this chapter we will describe theoretical aspects of these parts.

4.3.1. RDF2CAF
In this step, we transform available articles into a CAF goal (and constraints) model, the goal model
part of the CAF file. This is a semi-automatic step, where the author selects a lesson (GM) in MOT and
then the system searches (based on keywords and title) for related articles in the Sesame data store.
This is done by a Java utility which takes the meta-data in the Sesame store and the goal model in CAF
format as input, and generates a new (updated) lesson as CAF file. As the articles are stored in files on
the desktop, as an extra step, they have to be physically transported to the supporting server for MOT.
The author now decides which of the retrieved articles he wants to include or not.

Enrichment of the goal model and domain model
As MOT is mainly a tool for authoring educational (adaptive) material, the internal information
structures are based on strict hierarchies (see Figure 22). When enriching the domain model and goal
model, we, of course, want to get the right information in the right place in this hierarchy.
To achieve this, the program first queries the Sesame database, using as search terms title and
keywords of each domain concept found in the current goal model. This procedure may result in the
same file being relevant in many places within the hierarchy. The query looks as follows:

select x from {x} p {y} where y like “*keyword”

For example:
select article from {article} art:title {attribute} where attribute
like “*hypermedia”

Next, to ensure that we add every resource only once, the place with highest 'relevance' is sought.
For computing relevance, we have developed two slightly different alternatives, between which the
user can choose.

1) Concept oriented, relevance ranking method
The first relevance ranking method is computing relevance according to Equation 1:

Equation 1 Concept oriented ranking

||
||

k(a)
k(a)k(c)

=c)rank(a,
Ç

where:

Chapter 4. Prototypic Adaptive Hypermedia environment

 41

rank(a,c) is the rank of article a with respect to the current domain concept c;
k(c) is the set of keywords belonging to the current domain concept c;
k(a) is the set of keywords belonging to the current article a;
|S| = the cardinality of the set S, for a given set S.
We have chosen to implement two different computations. One with a set, and the intersection
operation on sets, and one with bags and the intersection operation on bags.

Within set theory, a bag can be formally defined as a pair (A, m) where A is some set and m : A � N
is a function from A to the set N = {1,2,3,...} of (positive) natural numbers. The set A is called the
underlying set of elements. For each a in A the multiplicity (that is, number of occurrences) of a is the
number m(a).
The intersection can be defined as (A Ç B, f) where f(x) = min{m(x), n(x)}.
For example:

{a,a,b} Ç {a,a,a,x} = {a,a}

The reason to use bags instead of sets is that, for our system, the number of times keywords appear in
certain texts can be relevant in itself (not just which keywords). As an alternative, the keywords could
have been weighted, with the weight representing the number of occurrences of a keyword instead of
using bags in which keywords occur multiple times. The standard way the keywords are retrieved,
however is as a bag of keywords.

Equation 1 shows how many of the keywords (shared by the article and the concept) are present in the
article. E.g., if an article has less keywords than another one, but the keywords shared between articles
and concept are the same, the former article will have a higher rank and ‘win’ the place in the concept.
Therefore, this formula is concept-oriented, in the sense that articles battle for the same concept.

If a resource is ranked equally for two domain concepts in the hierarchy, we add it to the topmost
concept. In our implementation, based on several runs, the number of articles to be added to any
concept was limited to three, as adding too many articles to one concept probably confuses the learner
rather than help her.

2) Article oriented relevance ranking method

We have also thought of implementing the rank as given by Equation 2.

Equation 2 Article oriented ranking

||
||

k(c)
k(a)k(c)

=c)rank(a,
Ç

Equation 2 shows how many of the keywords (shared by the article and the concept) are present in the
concept. E.g., if a concept has less keywords than another one, but the keywords shared between article
and concept are the same, the former concept will have a higher rank and ‘win’ the article. This
formula seems logical in the sense that it shows to which of the concepts the article should be
attributed.
Therefore, this formula is article-oriented, in the sense that concepts battle for the same article.

Actually, the formula was not implemented ad-literam, because the shared keywords between article
and concept should have higher priority as compared to the number of keywords per concept. We
actually implemented the article-oriented alternative method using the following algorithm.

IF (card(k(n1) Ç k(a)) = card(k(n2) Ç k(a))) THEN
IF (card(k(n2) > card(k(n1)) THEN connect to n1
ELSEIF (card(k(n2) < card(k(n1)) THEN connect to n2
ELSE
IF (n1 higher than n2) THEN connect to n1
ELSE connect to n2

ELSEIF (card(k(n1) Ç k(a)) > card(k (n2) Ç k(a))) THEN connect to n1

ELSEIF (card(k(n1) Ç k(a)) < card(k(n2) Ç k(a))) THEN connect to n2

Chapter 4. Prototypic Adaptive Hypermedia environment

 42

The main difference between the formula and the algorithm is the way it handles the case where two
possible target nodes have a different number of keywords in common with the paper to be added. In
the case of the formula, the deciding factor is always which portion of the keywords belonging to the
concept also belongs to the article. The idea behind this is that very general domain concepts may have
something to do with the article, but may be much to general, and have lots of additional keywords,
which have nothing to do with the current article. With the algorithm, the deciding factor is first the
absolute number of matching keywords, and only when they are equal, the relative matching is used, as
in the formula. We consider a concept, which has more keywords in common with the article, to have
more relevance than other concepts. The idea behind this is that, otherwise, a domain concept with only
one keyword, which happens to be also a keyword belonging to a certain paper, would have the highest
possible relevance for this paper, even if another concept would have 20 matching keywords of its 21
total keywords. The 2nd concept however is probably much more relevant.

3) Comparison of relevance ranking methods with information retrieval success measurements

Information retrieval is a well known area of computer science, which deals with ranking of retrieved
results (Ghosh, Lee, 2006), (Soboroff, 2002). Information can be retrieved from various sources, such
as databases, and XML files. For retrieval systems it is important to be able to measure how successful
they are on a given set of test data. Of course, this data set is of influence, and therefore many argue the
need of standard data sets - see for example (Chernov, 2005). A widely accepted method to measure
the success of an Information Retrieval system however is the use of precision and recall.

o Precision shows how close a given retrieved object is related to what the user asked, while
o recall tells us how many of the relevant objects where retrieved.

Precision and recall can be measured using the following formulae:

Equation 3 Recall

||
||

A
BA Ç

Equation 4 Precision

||
||

B
BA Ç

Where:

UAÍ = the set of relevant objects

UBÍ = the set of retrieved objects

U = the total set of documents used in the experiment

In information retrieval, usually, the standard Boolean model is used, which means that relevance is
determined in a binary way. Either a document is relevant or it is irrelevant. The precision & recall are
computed on a set of training data, with a set of test queries. A user would have to manually asses the
relevance of the resources in the training set with regard to the query.

Ideally, one would want to achieve a high level of recall without sacrificing precision. However, as the
figure below shows, as the recall rate increases, the precision usually deteriorates very rapidly.
Moreover, this trend is not linear. Depending on the type and quality of the information and the
retrieval algorithm, precision will change. The ideal balance between precision and recall will be found
at a payoff point that represents an acceptable balance of the precision and recall lines in a graph.
Traditionally, this point is defined by either fixing the recall (thus the number of allowed articles – see
Google), or by fixing the minimum precision threshold.

Chapter 4. Prototypic Adaptive Hypermedia environment

 43

Figure 31 Precision & recall (Diagnosticstrategies)

If we compare the precision & recall method in Information Retrieval to our first method of concept-
oriented results ranking this looks rather similar. Indeed, we can apply substitution to Equation 4 and
obtain Equation 5.

Equation 5 Substitution in the precision formula

||

||
 (a)):B k(c);:(A]

||
||

[
k(a)

k(a)k(c)
k

B
BA Ç

===
Ç

The substitution is interesting, as, indeed, the set of keywords from the original concept in MOT could
be considered to represent the set of (potentially) relevant objects, whilst the set of article keywords
represents the retrieved objects. Therefore, our formula represents some sort of precision measurement:
how precisely does the chosen article express the chosen concept.

Similarly, by comparing the formula for the article-oriented retrieval with the information retrieval
success measurements, one can see that this is comparable to a computation of the recall. In designing
the course, however, precision is probably preferable to recall, because adding too many articles can be
confusing instead of helpful. We have limited our recall to a threshold of three articles maximum per
concept, as already mentioned.
However, our two formulas respond to two different goals:

o finding the correct article for a given concept (concept-oriented)
o finding the correct place in the hierarchy for a given article (article-oriented)

Just as in recall versus precision in information retrieval, these two goals can be leading to different
responses and error structures.
The first might extract only relevant articles, but might attach them in too many places (the same article
might be relevant for more than one concept, and trying too hard to find an article for each concept
might generate too many copies of it).
The second might distinguish between merit concepts only, letting concepts compete, but may try to
add too many articles. For finding the optimal retrieval for a certain dataset, these two formulas should
be balanced against each other, finding the optimal payoff point, in the same way as is often done in
Information Retrieval with the recall and precision.

Chapter 4. Prototypic Adaptive Hypermedia environment

 44

CAF2MOT
The import of CAF files into MOT is implemented as a PHP script and done in two steps. First, the
domain map is processed. During this process, an associative array is created as a lookup table. In this
table, every domain concept attribute created is stored as follows:
[name_of_domain_map\name_of_concept_1\...\ name_of_ concept_N\attribute_name] =>

attribute_id

This allows a faster lookup in the next step then would be possible by doing a direct query on the
database.
In the second step, the goal model and its parts are generated. While importing, conflicts between goal
model names or names of domain maps may occur. There are currently three ways of handling this:

· The author can choose to not care about it and, as a result, get multiple domain maps and goal
models with the same name in MOT.

· The second option is to have domain maps and goal models with conflicting names renamed.
In this case, after the import, the user will see a list with the conflicting names and be asked
for new names.

· The third option is to merge goal models and domain maps with the same name (taking into
consideration that they might be extensions of each other). For domain maps, merging means
that two domain maps with the same name are compared, concept by concept. Domain
concepts and attributes that were not present before are added. This merge option is essential
to our application. For our purposes, a goal model is exported, then articles are added to the
CAF file and then the CAF file is imported back into MOT with the merge option. Using this
merge option means that possible additions made to the goal model between the export and
the import will not be deleted, and IDs of already existing attributes will not change, so other
goal models using one of the adapted domain maps will not be affected.

As the CAF format, which is a portable format used in several Adaptive Hypermedia systems, does not
include the goal model name, this can be exported as a separate XML file. Figure 32 shows a
screenshot of the CAF import interface.

Figure 32. Importing from CAF to MOT (My On-line Te acher)

Working in MOT, the system from a user’s point of view
In MOT, the data and meta-data imported from Sesame can be reordered and edited.

Chapter 4. Prototypic Adaptive Hypermedia environment

 45

Figure 33. Adding manual meta-data in a MOT goal model

Figure 33 shows an extract of editing in the goal model environment (the import from Beagle++
generates extra information both for the domain map as well as for the goal model). The paper called
‘Adaptive Educational Hypermedia: From generation to generation’ and all its relevant meta-data (title,
authors, references, conference where presented) have been added automatically, during extraction, to
the ‘Adaptive Hypermedia’ domain concept, at the highest level in the hierarchy. The paper ‘Adaptive
Authoring of Adaptive Educational Hypermedia’ has been added to the domain concept ‘Authoring of
Adaptive Hypermedia’, in a lower position in the hierarchy, as it is a more specific paper. The author
can now manually add pedagogical labels to this new material, labelling the material ‘adv’ for
advanced learners.

MOT2RDF: MOT2CAF
Importing MOT into CAF is also implemented as a PHP script. First, the goal model is constructed,
based on the goal model hierarchy of the CAF XML file. During this process, a list of the mappings
between goal model objects and domain objects is kept. After producing the goal model, the
corresponding domain map is generated. Every domain map used in the goal model is added to the
domain model, with all its sub-goal models.

MOT2RDF: CAF2RDF
For the sake of flexibility, and because CAF itself is not (yet) a standard, the MOT goal models should
also be exportable as well as importable as RDF. These RDF data can then be used again by Beagle++
(Beagle++ website). We came up with three different schemas of the RDF meta-data for exporting,
between which the author can choose.
1. The first schema is the one as described in (Cristea, De Mooij, 2003b). This format basically

contains the goal model and its used domain concept maps, in a similar way as the CAF XML
format. A graphical view of the schema can be seen in Figure 29. Since we already export the CAF
file, which is an XML format, we can use a XSLT style sheet and do an XSLT transformation to
translate the CAF file into an RDF file according to the first RDF schema.

2. An interesting possibility is the use of exported RDF meta-data for updating the Semantic Desktop
environment. This can be done by re-importing this RDF data back into the Sesame store. For this,
however, we need a format that describes the added resources only. The rest of the goal model, as
well as the rigid structure of domain concept maps and goal models, is not very suitable for this
purpose. Therefore, we defined an alternative RDF schema for exporting the added resources only,
together with their changed or added attributes.

Chapter 4. Prototypic Adaptive Hypermedia environment

 46

3. As a third alternative, we also add hierarchy information between these resources, declaring
concepts to be sub- and super concepts of other concepts, depending on their place in the
hierarchy.

Currently, importing of RDF can only be done, if the RDF is in accordance with the RDF schema for
MOT, see 4.2.2.

4.4. Handling flexible schemas
Previously, we implicitly assumed the RDF schema to be the fixed schema described in section 4.2.1,
i.e. all elements, relations and attributes to have a fixed definition. Although we did not depend on the
names to be exactly as they are described, except for the title and file name attribute, we did assume all
attributes to be directly connected.
In reality, our Sesame store will contain data based on different schemas, as schemas on a Semantic
Desktop continuously evolve. There may be evolving insights which lead to multiple versions of the
same schema and different sources (Cristea et al., 2006), (MyET website). These evolving schemas
pose problems on the side of meta-data generation. Also, in our case (Cristea et al., 2006), the retrieval
of the data will be affected. We also could encounter problems caused by the flexible schemas,
because, in such a case,

o we cannot expect all attributes to be directly connected to the resources we are retrieving, and
o we cannot expect any attribute to have a specific name;

still, we need at least a title and a URI to be able to add resources in a useful way.
A solution for this can be based upon malleable schemas, as introduced in (Dong, Halevy, 2005). We
will introduce the concept and its solution in the following sections.

4.4.1. Malleable schemas
Although the problem of integrating information based on different schemas is not new, malleable
schemas present a new solution (Dong, Halevy, 2005). Earlier solutions are often based upon mediating
or merging more schemas (Buneman et al., 1992) or mapping to higher level schemas or ontologies
(Gardarin, Dang-Ngoc, 2004), (Ghita et al., 2005) and (Schlieder, Naumann). More advanced solutions
deal with gradually evolving schemas (Velegrakis et al., Deters, 2003). Malleable schemas offer a way
for modellers to capture impreciseness of the domain during the modelling phase in a well principled
fashion (Dong, Halevy, 2005). Malleable schemas are an answer to the following main problems, when
integrating information on the web, and especially on the desktop,:

· multiple original schemas with varying semantics;
· evolution of schemas and semantics;
· need of only partial integration (as opposed to full integration): often, only a part of the

existing schema is relevant for a particular application or user; integrating the whole schema
can be both an arduous as well as a superfluous exercise.

With the use of malleable schemas, vagueness can be captured at modelling time. The modeller does
not have to commit to a strict schema, but can base his solution on a schema with some vague parts,
which can evolve later.
The data model as described in (Gardarin, Dang-Ngoc, 2004) fits the RDF/RFS model (Sesame website
). Everything is represented as <subject, predicate, object> triples. Subject represents class objects,
predicate represents relationships and object represents attributes. Attributes have a range of allowed
values. The main differences between malleable schemas and normal schemas are:

· classes or relationships do not need to have a precise naming
· structure can vary

In Figure 34 we see an example malleable schema, based on which, queries between MOT and the
Semantic Desktop data in Beagle++, are made. As we can see in (Cristea et al., 2006), there are three
main types of possible flexibility. The modeller can determine which flexibility he wants.
The different types of flexibility are:

· flexible class and attribute names, marked in the example of Figure 34 by names ending with
a question mark;

· flexible relation or property names, marked in the example of Figure 34 by names ending
with a question mark;

· flexible path, marked in the example of Figure 34 by double question marks.

Chapter 4. Prototypic Adaptive Hypermedia environment

 47

Figure 34 RDF malleable schema of directory data.

Term impreciseness: Flexible class and attribute names
In Figure 34, class or attribute impreciseness is denoted via single question marks ‘?’. For instance, the
entity ‘Article’ is imprecise (or malleable) and is written as ‘Article?’. In other words, a malleable
schema allows impreciseness in the naming of classes. E.g., ‘File’ can sometimes appear as ‘Article’,
sometimes as ‘Artikel’. In the latter, the language has to be identified, whilst in the former, synonyms
have to be searched for. Such an uncertainty about class names can appear, as listed above, when the
same class has different names in two different schemas, but also, when the target schema that is
queried is not known. This malleable feature of schemas is based on the ones proposed in (Dong,
Halevy, 2005). In the following, the malleability definition in (Dong, Halevy, 2005) is extended, based
on the needs we have found in our transformation and conversion exercise between schemas.

Term impreciseness: Flexible relations or property names
Just as classes can be imprecise, properties of classes can also be only partially known. For instance,
we can expect that the malleable class ‘Author?’ can have a property ‘name’, but it could also be
‘firstName’ and ‘lastName’, or be expressed in another form. Therefore, we depict this expectation by
adding to our schema the malleable property ‘name?’. Again, the question mark ‘?’ denotes the
impreciseness.
Furthermore, composed words can appear, such as in ‘presentedAt’ versus ‘conference’. In such a case,
synonyms are not enough. First, decomposition into simple words has to be performed, and then, the
expression identified.

Flexible paths
Beside the naming differences, schemas can also have different structures. A class can be connected to
another class or property via a direct connection, or via an imprecise, indirect connection. In our
example (Figure 34), the imprecise attribute ‘presentedAt?’ can be directly or indirectly connected to
the imprecise object ‘Article?’. This would correspond in the Beagle++ meta-data scheme of section
4.2.1, in Figure 28, to the relationship between the (not displayed) property ‘Name’ of the class
‘Conference’, to the entity ‘Publication’. ‘Name’ in Figure 28 is not a direct attribute of the class
‘Publication’. Therefore, in Figure 34, the property ‘presentedAt?’ (equivalent to the above mentioned
property ‘Name’ in Figure 28), appears as an imprecisely linked property of the class ‘Article?’
(equivalent to the above mentioned class ‘Publication’ in Figure 28). In Figure 34, such indirect,
imprecise connections (of undetermined length) are marked by double question marks ‘??’ .

The above three types of impreciseness can be resolved in various ways. Term similarity (Dong,
Halevy, 2005), e.g., can be resolved via Wordnet (WordNet website) or by other similarity measures.
We can rely on extensive research regarding similarity measures between individual schemas (instance
similarity (Dong, Halevy, 2005), structural similarity: e.g., editing distance (Zhang et al., 1998),
approximate nearest neighbour search (Shasha et al., 2005), unordered tree matching (Schlieder,
Naumann), schema-corpus similarity (He, Chang, 2003)).

Chapter 4. Prototypic Adaptive Hypermedia environment

 48

It is important to note that, for malleable schemas, complete resolution of the impreciseness and
schema mapping is not desirable. The resolution is only interesting and important when specific queries
are posed against the malleable schema. The elements of the malleable schema which do not appear in
the queries do not need to be bound to concrete schema instances or schema alternatives. For malleable
schemas, the resolution process of the impreciseness is an iterative discovery process.

In the rest of this chapter we will introduce different types of malleable schemas and the way we
handled malleable schemas in our prototype.

4.4.2. Types of malleable schema
We identify two different situations where one may need to deal with flexible, evolving schemas, or
schemas which are not completely known. For distinguishing these types we distinguish between

o applications which manage the information, answering questions (queries) of other
applications, and

o applications which retrieve information, asking the management applications questions
(queries).

The management application needs to handle malleable schemas, if it does not know exactly how the
data it stores looks like. It will then try to construct a mapping from what kind of questions other
applications ask. We call this type server-side.
The other situation is typically an application which does not know what it should be asking for
exactly. This we call the client-side type.
In our case, it may be interesting for the Beagle++ desktop search tool to incorporate ways of handling
malleable schema of the first type. The other type concerns our prototype. In the following section we
will show how this concerns our prototype, and how we are handling it.

4.4.3. Our approach for our prototype

In our prototype, we want to be able to deal with evolving schemas. For this, we came up with a way to
handle the client-side of malleable schemas as much as possible. In our authoring environment, added
information will always need a title, and to be able to locate resources, we will need a file name .
The other attributes however may vary. We select all attributes which we can find, and give the author
the option to add them. This also includes indirectly connected attributes. We do this by looking if
attributes have attributes themselves. As for the title, we use an implementation of a WordNet
(WordNet website) library to get hyponyms, hypernyms and synonyms of the word title.

Hyponyms are words with a particular meaning that is included in a more general word, title in our
case. For example dog and cat are hyponyms of animal. A hypernym is a word with a particular
meaning which includes a more specific word. For example animal is a hypernym of cat.

This is done behind the scenes, transparently, an author will not notice it, and only if a title attribute
cannot be found. First we look for an attribute called title. If it does not exist, we will use the retrieved
words to look for a title attribute. For the file name attribute we test every attribute, whether or not
it contains a file name . If this file exists, then we have found our file name attribute, regardless of
its name. We assume that there are no attributes containing names of files which have nothing to do
with the resource.

To prevent loops in the RDF graph form bringing our prototype in a deadlock state, we also added a
simple cycle detection method. A list of resources is kept, while retrieving all attributes describing a
certain resource. If we encounter a resource which was already added, and that was in the list, we stop
adding more resources.

4.5. Implementation of our prototype
In this section we will describe the implementation of the different parts of our prototype in more
detail. First, we describe the implementation of the extension to the MOT authoring system.
Subsequently, we describe the enricher application.

4.5.1. PHP CAF export, import and merge
The Adaptive Hypermedia authoring system MOT is a web-based system. As a programming language
we choose PHP because of familiarity with PHP, ease of installation and the availability of ready to use
XML parsers. In Figure 35 we see an UML overview of the extension.

Chapter 4. Prototypic Adaptive Hypermedia environment

 49

Figure 35 PHP MOT extension overview

For a more detailed look, see Appendix B. The basic structure is as follows: For the import, the export
as well as the merge process, there is an abstract class, which uses a database connection and handles
some things commonly used between the domain model part and the goal model part. For these classes,
concrete implementations exist for the goal model and domain model. For the import, an extra class
handles the use of an XML parser. For the import, it is important to first use the domain model import,
as otherwise goal models would link to not yet existing concepts. For the export, the order is exactly
inverted, since only after exporting the goal model, one can know which concept maps are needed. The
merger will merge two domain concept maps (domain merger) or two goal models (goal merger) node
by node. This is needed when the author imports lessons and domains, and some (parts of the) lessons
and domains are already existent; then, a merge is necessary, to enable the author to update the existing
parts with the newly added information.

4.5.2. Java enricher

The enricher application needs to be able to retrieve files which are located on the desktop of an author.
Because of security limitations, it could not be implemented in PHP. Because the API to the Sesame
store was available mainly in Java, we decided it would be best to implement our enricher application
in Java as well. In Figure 36 we see an overview of the enricher system.

Figure 36 Enricher overview

The enricherGUI is the user interface from which the author controls the application. This uses
CheckNode and CheckRender for visualization of the retrieved resources. It also uses an instance of
Enricher, which does the actual processing. It reads the configuration file, parses the CAF file, and
writes back the new CAF file. For a more detailed look see Appendix C.

4.5.3. Integration of extension with MOT
The integration of our extension with MOT was relatively easy. The CAF subfolder could be placed in
the MOT folder, just as the files which determine the look and feel (header.html, afterMenu.html,
footer.html). We do require PHP to be installed with the MySql extension activated. Also, the links on
the teacher’s site to the import and export of CAF and RDF had to be defined in the system in the
appropriate files (teacherhome.cgi and teacherhomelogin.cgi in the old version).

Chapter 4. Prototypic Adaptive Hypermedia environment

 50

4.5.4. Integration with the new version of MOT
In (Saksena, Cristea, 2006), a new version of the MOT Adaptive Hypermedia authoring interface is
described. This newer version offers an interface based on web forms, and thereby offers a usable
interface to the author, which is one of the main problems of Adaptive Hypermedia systems currently,
as we saw in the introduction of the thesis. This new version was created as follows. In (Saksena,
Cristea, 2006) the sub-problems, which influenced the usability of MOT negatively in the previous
version of the system, are defined, based on a number of user studies with the help of questionnaires.
Based on the studies, as well as on comparisons between LAOS and LAG theory and actual
implementation, a list of detected problems or possible improvements was created. Next, their priority
and implementation difficulty was computed and listed. Finally, solutions were defined and are
currently being implemented in an iterative process.

The integration of the extension with the new version of MOT was relatively easy. As the first set of
improvements were targeted mainly at the system interface, the database schema of version 2 of MOT
has remained the same, which meant that the functionality of our extension did not have to be adapted.
Of course, we did require PHP to be installed. Since the look and feel changed a fair deal, the files
responsible for the look and feel (header.html, afterMenu.html, footer.html) had to be adapted to the
new look and feel. Also, the links on the teacher’s site to the import and export of CAF and RDF had to
be defined in the system in the appropriate files (lessons.cgi in the new version, teacherhome.cgi and
teacherhomelogin.cgi in the old version). Below, a few screenshots of the result of this integration are
shown. In Figure 37, as an example, a student preview of a lesson on Adaptive Hypermedia is shown.

Figure 37 Student view in the new system

In Figure 38 the new list of goal maps, previously called lessons is shown, with the export screen of our
extension.

Chapter 4. Prototypic Adaptive Hypermedia environment

 51

Figure 38 Exporting a goal map in the new system

4.6. Discussion
Currently, there are two main problems with authoring of Adaptive Hypermedia. First of all, although
some authoring tools have been created, the main target was initially the functionality. This means that
the authors have to work with interfaces which are not very usable, at best, or learn new complex
formats at worst. The second problem is the lack of authoring assistance an author currently
experiences while authoring. In this chapter we showed how we tackled both problems. Our approach
was mainly focused on providing authoring assistance by means of integrating an Adaptive
Hypermedia authoring system with a Semantic Desktop environment. By integrating this semi-
automatic authoring environment with a newly improved authoring system (Saksena, Cristea, 2006)
targeted at usability, however, we also addressed the usability issue.
Providing authoring assistance is achieved by means of semi-automatically adding content to the
authoring environment with appropriate attributes (labels and weights), for adaptation.

In this chapter, we saw that MOT and Beagle++ were chosen as Adaptive Hypermedia Authoring
environment and Semantic Desktop environment, respectively. We saw that our choice for MOT was
mainly motivated by the web-based interface, as well as by the fact that there was an RDF schema
available, and therefore a clear possibility for the use of this meta-data. The Beagle++ environment was
mainly chosen as a Semantic Desktop environment because of its automatic generation of useful meta-
data, as well as its architecture, which is actually designed to allow the building of extensions.

We saw that in our prototype this is achieved by first exporting a goal model to a common format
(CAF), querying the data in the Semantic Desktop environment, using the query interface to the
Sesame store used by the Semantic Desktop environment we have chosen, and then, by importing the
file in this CAF format, with the new information added to it, back into the authoring environment. We
also saw that it is possible for the Semantic Desktop environment to take advantage of manually
adapted information from the authoring environment.

Chapter 4. Prototypic Adaptive Hypermedia environment

 52

Our prototype, integrated with the better usable authoring environment, as seen in section 4.4.3,
provided the teacher with a way to take a basic linear course and semi-automatically add relevant
information, such as articles, to it, for example, for advanced learners, with the appropriate weights and
labels for adaptation. We also saw that our prototype, by applying malleable schema techniques, can
handle, to some degree, evolving schemas in our environment. This ensures that a new version of the
schema can be used without many problems, and that other sources of meta-data can also be used.

We did not yet obtain full flexibility towards any arbitrary type of schema. Some basic things, like
indirectly connected attributes (Cristea et al., 2006), are for example still required to be designed and
implemented, and therefore define future possible work. The generation of adaptation rules was not
taken into consideration. The labels and weights are based upon a set of adaptation rules used in a
given, predefined strategy. Labelling and weighting is currently determined via a setting by the author.
More advanced methods of determining labels and weights could be interesting; such as looking at the
labels and weights of the existing items, and adding resources with a weight with a certain amount
higher - or a label a step higher (if we think of the beginner – intermediate – advanced example). Or,
alternatively, looking at the labels and weights used in the strategy, and interpret them automatically in
the extraction process. The use of a common format, as well as some techniques of malleable schemas
for flexibility towards the RDF schema, are a first step towards a way to integrate an arbitrary Semantic
Desktop environment with an arbitrary Adaptive Hypermedia authoring system.

We saw that the integration of an Adaptive Hypermedia authoring system and a Semantic Desktop
environment can indeed offer the author authoring assistance, and that together with the integration
with a more usable environment, this can be a first step towards broader use of Adaptive Hypermedia
by potential authors. We also showed that a prototype can be implemented, based on the processing of
a portable file format, intended for transferring the contents of the system, such as the CAF format
2.1.3; we did this in the enricher application.

Chapter 5 Conclusions and further work

 53

5. Conclusion and Further Work
Adaptive Hypermedia systems offer a way to deliver content tailored towards users’ needs in an
automatic way. In this thesis, we have seen that authoring of such content, however, is time-consuming
and difficult. The problems with authoring of Adaptive Hypermedia are the lack of a highly usable
interface as well as the lack of authoring assistance. A usable interface together with a system which
offers assistance to the author while authoring adaptive content will be a first step towards making
authoring of Adaptive Hypermedia more profitable for the authors, provided changing environments,
sources, and versions are taken under consideration.
In this thesis, we have shown that authoring assistance can be achieved by means of integrating a
Semantic Desktop environment with an Adaptive Hypermedia environment.
We have also shown that this, together with the application of a more usable authoring interface, can
provide a first step towards the desired authoring environment, in which authors will consider it
profitable to author Adaptive Hypermedia, not only because of the benefits of the final result, but also
because of the authoring process itself: allowing linear processing, like in any e-learning system, aided
by semi-automatic generation of adaptive alternatives and behaviour.
We have shown that the Semantic Desktop offers a way to capture meaning of data. If systems can
agree upon this meaning, which they can do via ontologies, they can process this data in a similar way.
We have shown how we have taken advantage of this, and integrated the Beagle++ Semantic Desktop
search tool with the MOT Adaptive Hypermedia authoring environment.
The process works via a file format called CAF which is a common file format among Adaptive
Hypermedia systems. Content can be exported to CAF from MOT using our extension. A newly
developed enricher application can retrieve and process the semantic data in Beagle++ and add relevant
resources available on the desktop for adaptation.
With our extension, this adapted content can be imported back into MOT again.
However, the Beagle++ environment can also take advantage of manual adaptation in the MOT
environment. This can be done by means of exporting the content as RDF, which is the format which
can be imported into the Beagle++ environment.
To complete the RDF cycle, RDF can also be imported into MOT.
We have seen how our extension for the MOT Adaptive Hypermedia authoring system was
implemented, as well as how the Java application, which does the actual adding of adaptive content,
was implemented. An installation guide can be found in Appendix A.

5.1. Solutions
We have shown in the thesis that a first step towards a better Adaptive Hypermedia authoring
experience can indeed be made by our approach; and that this can solve the problem of Adaptive
Hypermedia systems of having poor interfaces, as well as the problem of lack of authoring assistance.
The problem of the poor usability has been solved by performing user studies (Saksena, Cristea, 2006)
and improving the elements of a current web-based Adaptive Hypermedia authoring system, which
were detected as being problematic. The improved interface that was the result of these studies was
integrated with an extension we made for offering assistance to the author. The actual integration went
better than expected, because the underlying model on which the system was based, as well the way the
data was stored, or the user could navigate, were not changed much.
We have shown how this assistance can indeed be provided by the integration of an Adaptive
Hypermedia authoring system and a Semantic Desktop system. The current prototype demonstrates that
our approach enables turning basic linear content into richer adaptive content (semi-)automatically.
However, the usage of OWL for reasoning over the Semantic data proved to be unsuccessful, because
of the lack of reasoning rules a priori available. The access to the semantic data proved quite easy, by
the usage of the Sesame RDF store. During the process of refining our method, we found out that it
would be a good idea to consider evolving Semantic data. We observed that versions, as well as sources
of this data may vary over time, and indeed also found a solution in the application of malleable
schemas.
The approach of combining two relatively separate fields Adaptive Hypermedia and Semantic Desktop,
although illustrated by an example in the educational setting, can be applied to other fields as well.

A step towards our main goal, adaptive authoring of Adaptive Hypermedia, was thereby achieved. The
author receives some assistance in an adaptive way, which enables him to create non-adaptive content
and semi-automatically add all the alternatives needed. What gets added exactly is adapted to what the
author has on his desktop, and, of course, depends on which of the proposed resources he finally

Chapter 5 Conclusions and further work

 54

selects. In this way, we have successfully extended the notion of adaptivity in hypermedia: not only
adaptivity to the end user (learner or otherwise) is necessary, but also, the adaptivity towards the needs
and goals of the author (in our case, the teacher).
In the following, we shall examine each sub-goal, as defined in section 1.4, and analyze the degree to
which it has been accomplished.

Sub-goal 1, making the authoring process more profitable by our proposed solution: the integration of
two fields which have been almost completely separate until now, Adaptive Hypermedia authoring and
the Semantic Desktop, has indeed been achieved. The author can take a non-adaptive piece of content
and add all the alternative paths semi-automatically, saving a lot of time in the process; thus, some
level of profitability has been achieved. More extended evaluations are necessary to examine how these
functionalities are perceived by users.

Sub-goal 2, providing a form of authoring assistance in this way: has been achieved. Authors can take a
non-adaptive piece of content and add additional paths for adaptivity semi-automatically, which saves
them a lot of time. Although we have selected MOT as the authoring system, this approach is not only
valid in an educational setting, but applies to other fields as well. Other strategies, beside the beginner
– intermediate – advanced strategy used in the examples in this thesis, can also be used, if the author
chooses appropriate weights and labels.

Sub-goal 3, of taking advantage of automatically generated meta-data to save manual annotation steps :
is accomplished by using a Semantic Desktop environment, which automatically generates meta-data
about resources.

Sub-goal 4 The integration with a new, improved web forms-based authoring interface, to provide
authors with a usable interface, in which they receive some assistance: was also achieved .Although the
work on the usability and the work on the authoring support was done in parallel, keeping the data
consistent meant that little effort was necessary to perform the integration.

5.2. Limitations
An important limitation of our current solution is that the author is only provided help if he produces a
first version of basic content, which does not have to be adaptive. The author thus needs to create
content of good quality, as a basis for the extended content.
This is just one form of authoring support. Many other ways of providing authoring support would be
possible, such as, for example, providing overviews of content created with the relations to other
concepts visualised. We did not consider any other way of authoring assistance.
The software which was produced is a prototype. This means that the testing performed has been done
on a small scale and no real study has been performed with a larger group of real users. Therefore,
unfortunately, one cannot expect the same robustness and ease of use as one would expect from a full
scale commercial system.
Another limitation is that it requires the author to have relevant information on his desktop. An expert
in any field will have lots of relevant articles, bookmarks etc. on his desktop. If, however, for some
reason, the author decides not to author from the same computer as from the one on which he does the
other work - one can think, for example, of an author wanting to author at home, while doing work in
the area at an office somewhere else - the approach does not work at all. No relevant information will
be found, and therefore the author will not receive any help.
The World Wide Web is full of information. Our approach however has no way of reviewing the
quality of information, and therefore does not look on the web, with many web pages of questionable
quality.

5.3. Future work
Taking assistance in authoring of Adaptive Hypermedia one step further, we would like to consider, for
future research, ways to obtain full flexibility towards evolving schemas. Currently, we still require a
title and file name attribute, which may be named differently and may not be directly connected. Some
resources, however, may have this information in an implicit way.
Currently, labels and weights of added resources are determined by a configuration file. The author is
supposed to set the appropriate labels and weights for the strategy he is using. A more advanced way or
labelling and weighting would be interesting. One can think of weighting based upon some kind of
difficulty ranking, or based upon the concept to which the retrieved resource belongs. For example, if

Chapter 5 Conclusions and further work

 55

we have a strategy with beginner, intermediate and advanced students viewing a goal model, resources
added to a beginner concept may be label as intermediate, whereas a resources added to an intermediate
concept would be labelled as advanced.
Moreover, it may be possible to introduce strategies for labelling and weighting added resources in a
similar way as we have the LAG strategies (see section 2.1.2) for adaptation in the LAOS model (see
section 2.1.1).
It could also be interesting to see if our integration can be extended and provide a more general
integration between Adaptive Hypermedia authoring systems and Semantic Desktop environments. In
principle, the use of the CAF format already enables the use of any Adaptive Hypermedia system
which features and import and export of the CAF format. The use of an environment which processes
RDF, in principle, enables the use of any Semantic Desktop environment, which enables us to get
access to its RDF data.
Also, opportunities of the Semantic Desktop for providing help with other steps of the authoring
process, as well as with other approaches, would be very interesting to explore.

5.4. Final Considerations
In this thesis we have shown that it is possible to improve upon the poor authoring experience of
current Adaptive Hypermedia systems and move towards a better authoring environment which offers
benefits to the author. By using this authoring environment, convincing potential authors to use
Adaptive Hypermedia should be much easier. However, we are still a long way off from an ideal
Adaptive Hypermedia authoring environment, if indeed such an environment which is ideal for every
potential author exists. This thesis however has clearly shown that indeed Adaptive Hypermedia
authoring environments can be improved. An environment, which save authors a lot of time, rather
than demanding extra effort, is possible and essential for the adoption of Adaptive Hypermedia by a
broader public. This was done by adapting to the author’s needs, thus generating Adaptive Authoring of
Adaptive Hypermedia.

 References

 56

References

(Beagle website)

Beagle, http://beaglewiki.org/Main_Page

(Beagle++ website)

Beagle++, http://www.kbs.uni-hannover.de/beagle++/wiki/pmwiki.PHP

(Bechhofer, 2003)
Bechhofer, S. OWL Reasoning Examples, 2003, http://owl.man.ac.uk/2003/why/latest/

(Berners-Lee, 1998)

Berners-Lee, T.: What the Semantic Web can represent. W3C 1998.

(Broekstra et al., 2002)

Broekstra, J., Kampman, A., van Harmelen, F. Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema In Proceedings of the First International Semantic Web Conference
(ISWC 2002), Sardinia, Italy, June 9-12 2002, pg. 54-68. Springer-Verlag Lecture Notes in Computer
Science (LNCS) no. 2342.

(Brusilovsky et al., 1996)

Brusilovsky, P., Schwarz, E., Weber, G. ELM-ART: An intelligent tutoring system on world wide web.
In Proceedings of International Conference on Intelligent Tutoring Systems (ITS’96) (Montreal,
Canada, June 1996), 261-269.

(Brusilovsky, 1996)

Brusilovsky, P.: 1996, Methods and techniques of adaptive hypermedia. User Modeling and
User-Adapted Interaction 6(2-3), 87-129..

(Brusilovsky, 2002)

Brusilovsky, P., Adaptive Hypermedia, User Modeling and User Adapted Interaction, Ten Year
Anniversary Issue (Alfred Kobsa, ed.) 11 (1/2), 2002, 87-110.

(Brusilovsky, 2004)

Brusilovsky, P. (2004) Adaptive Educational Hypermedia: From generation to generation. Proceedings
of 4th Hellenic Conference on Information and Communication Technologies in Education, Athens,
Greece, September 29 - October 3, 2004, pp.19-33.

(Buneman et al., 1992)
Buneman P., Davidson, S., and Kosky, A. Theoretical Aspects of Schema Merging, Proc. 3rd Int. Conf.
Extending Database Technology, Vienna, Austria (March 1992) 152-167.

(Calvi, Cristea, 2002)

Calvi, L. and Cristea, A.I.: Towards Generic Adaptive Systems Analysis of a Case Study, AH 2002,
Adaptive Hypermedia and Adaptive Web-Based Systems, LNCS 2347, Springer, 79-89.

(Chen et al., 2003)

Chen, J., Cristea, A., Okamoto, T. Communicative Task Modeling and Its Practice on Academic
English Learning in a Web-based Environment. In Proceedings of the International Conference on
Telecommunications ICT'2003, at the Telecommunications + Education Workshop (supported by the
IEEE Learning Technology Task Force) February 23 - March 1, 2003 Tahiti, Papeete – French
Polynesia (to appear).

 (Chernov, 2005)

 References

 57

Chernov, S, INEX 2005: Playground for XML-retrieval, Talk at the L3S research centre,
http://www.l3s.de/~chernov/InfoLunch_21_12_2005_2.ppt

(Chirita et al., 2005)
Chirita, P.-A., Gavriloaie, R., Ghita, S., Nejdl, W., and Paiu, R. Activity-Based Meta-data for Semantic
Desktop Search. Proceedings of the 2nd European Semantic Web Conference, Heraklion, Crete, May
(2005).

(Chirita et al., 2006)

Chirita, P.-A., Costache, S., Nejdl, W., and Paiu, R. Beagle++: Semantically Enhanced Searching and
Ranking on the Desktop. Proceedings of the 3rd European Semantic Web Conference, Budva,
Montenegro (to appear, June 2006).

(Cristea, 2004)

Cristea, A.I., Evaluating Adaptive Hypermedia Authoring while Teaching Adaptive Systems, pp. ,
SAC'04 (ACM Symposium on Applied Computing) 2004, Nicosia, Cyprus

 (Cristea, Aroyo, 2002)

Cristea, A.I. and Aroyo, L.: Adaptive Authoring of Adaptive Educational Hypermedia, AH 2002,
Adaptive Hypermedia and Adaptive Web-Based Systems, LNCS 2347, Springer, 122-132.

(Cristea, De Bra, 2002)

Cristea, A.I. and De Bra, P.: Towards Adaptable and Adaptive ODL Environments, Proceedings of the
AACE E-Learn’02, Montreal, Canada, 232-239.

(Cristea, Kinshuk, 2003)

Cristea, A.I., Kinshuk, Considerations on LAOS, LAG and their Integration in MOT, ED-MEDIA’03,
Honolulu, AACE

(Cristea, De Mooij, 2003)

Cristea, A. I. & De Mooij, A. Adaptive Course Authoring: My Online Teacher. Proceedings of ICT'03,
Papeete, French Polynesia (2003).

(Cristea, De Mooij, 2003b)
Cristea, A., De Mooij, A. LAOS: Layered WWW AHS Authoring Model and its corresponding
Algebraic Operators. In Proceedings of WWW’03, Alternate Education track. (Budapest, Hungary 20-
24 May 2003). ACM.

(Cristea, de Mooij, 2003c)

Cristea, A.I., de Mooij, A., Evaluation of MOT, an AHS Authoring Tool: URD Checklist and a special
evaluation class, CATE'03 Rhodos, Greece, IASTED, ACTA Press, pp. 241-246, ISBN 0-88986-361-X

(Cristea, Calvi, 2003)

Cristea, A.I., Calvi, L.. The three Layers of Adaptation Granularity. UM’03, 2003. Pittsburg, US.

(Cristea, Cristea, 2004)

Cristea, A.I., Cristea, P., Evaluation of Adaptive Hypermedia Authoring Patterns during a Socrates
Programme Class, International Peer-Reviewed On-line & Print Journal "Advanced Technology For
Learning" 1(2) 2004, ACTA Press.

(Cristea et al., 2000)

Cristea, A.I., Okamoto, T. and Belkada, S.: Concept Mapping for Subject Linking in a WWW
Authoring Tool: MyEnglishTeacher: Teachers' Site, ANNIE'00, Smart Engineering System Design:
Neural Networks, Fuzzy Logic, Evolutionary Programming and Complex Systems, Eds. Drs. Dagli et
al, ASME Press.

 References

 58

 (Cristea et al., 2005)

Cristea, A.I., C. Stewart, T. Brailsford and P. Cristea, Evaluation of Interoperability of Adaptive
Hypermedia Systems: testing the MOT to WHURLE conversion in a classroom setting, A3EH
Workshop, AIED'05 July, 2005, Amsterdam, The Netherlands

(Cristea et al., 2005b)

Cristea, A.I., Smits, D., and De Bra, P. Writing MOT, Reading AHA! - converting between an
authoring and a delivery system for adaptive educational hypermedia -, A3EH Workshop, AIED'05,
Amsterdam, The Netherlands (July, 2005)

(Cristea et al., 2005c)

Cristea, A.I.., Stewart, C., Automatic Authoring of Adaptive Educational Hypermedia, 2005

(Cristea et al., 2006)

Cristea, A.I., Hendrix, M., Nejdl, W., Schemas for Adaptation on the Semantic Desktop, EC-TEL 2006

(Cristea et al., 2006b)

Alexandra Cristea, Angelo Wentzler, Egbert Heuvelman and Paul De Bra, "Adapting SME Learning
Environments for Adaptivity", Proceedings of ICALT'06

(De Bra et al., 2002)

De Bra, P., Aerts, A., Smits, D., Stash, N., AHA! Version 2.0, More Adaptation Flexibility for Authors.
Proceedings of the AACE ELearn'2002, Montreal, October 2002, 240-246.

(De Bra et al., 2003)

De Bra, P., Aerts, A., Berden, B., De Lange, B., Rousseau, B., Stanic, T., Smits, D., Stash, N., AHA!
The Adaptive Hypermedia Architecture. Proceedings of the ACM Hypertext Conference, Nottingham,
Uk, August 2003, pp. 81-84.

(Diagnosticstrategies)

http://www.diagnosticstrategies.com/info_retrieval.htm

(Dong, Halevy, 2005)

Dong, X., and Halevy, A., Malleable Schemas, WebDB, Baltimore Maryland (June 16-17, 2005),
ACM, http://webdb2005.uhasselt.be/papers/P-8.pdf.

(Duval, 2006)

Duval, A., PROLEARN summer school 2006, Bled Slovenia

 (Gardarin, Dang-Ngoc, 2004)

Gardarin, G., and Dang-Ngoc, T-T. Mediating the Semantic Web. 4th journal on extraction and
management of knowledge, Clermont Ferrand, Université Blaise Pascal (20-23 January 2004).
http://georges.gardarin.free.fr/Articles/MediatingtheSemanticWeb.pdf

(Ghita et al., 2005)

Ghita, S., Nejdl, W., and Paiu, R., Semantically Rich Recommendations in Social Networks for
Sharing, Exchanging and Ranking Semantic Context, International Semantic Web Conference,
Galway, Ireland (6 November 2005) 6 – 10.

(Ghosh, Lee, 2006)
Ghosh, J., Lee, D., Performance Evaluation of Information Retrieval Systems,
http://www.cs.utexas.edu/~mooney/ir-course/slides/Evaluation.ppt

(Harth, Decker, 2004)

Harth, Decker, OWL Lite- Reasoning with Rules, 2004,
http://www.wsmo.org/2004/d20/d20.2/v0.2/20041123/

 References

 59

(He, Chang, 2003)

He, B., and Chang, C.-C., Statistical schema integration across the deep web. In Proc. of SIGMOD
(2003).

(Hendrix et al., 2006)

Hendrix, M., Cristea, A.I., Nejdl, W., Authoring Adaptive Learning Material on the Semantic Desktop,
1st International Workshop on Authoring of Adaptive and Adaptable Hypermedia, Adaptive
Hypermedia 2006

(Huth, Ryan, 2005)

Huth, Ryan, Logic in computer science, modelling and reasoning about systems, 2005, ISBN 0-521-
54310-X

(IEEE LTTF website)

IEEE LTTF, Learning Technology Task Force. http://lttf.ieee.org/

(Kinshuk , Lin, 2003)

Kinshuk & Lin. User Exploration Based Adaptation in Adaptive Learning Systems. International
Journal of Information Systems on Education, 2003 (in press).

(Kinshuk, Lin, 2003b)

Kinshuk, Lin Adaptivity in Web-based Education focused on Cognitive Skills Acquisition. Tutorial at
CATE 2002, Cancun, Mexico.

(McGuinness, van Harmelen, 2004)

McGuinness, van Harmelen, Web Ontology Language (OWL) Overview, 2004,
http://www.w3.org/TR/owl-features/

 (MOT website)

MOT homepage, http://wwwis.win.tue.nl/~acristea/mot.html

(MyET website)

My English Teacher (MyET),
http://wwwis.win.tue.nl/~alex/MyEnglishTeacher/TeachersSite/index.html

(Saksena, Cristea, 2006)

Saksena, M., Cristea, A.I., Towards more Efficient Generic Semantic Authoring for Adaptive
Hypermedia. Proceedings of APS’06, August 23, 2006, Odense, Denmark.

(Sauermann et al., 2005)

L. Sauermann, A. Bernardi, and A. Dengel. Overview and Outlook on the Semantic Desktop, in
Proceedings of the 1st Workshop on The Semantic Desktop. 4th International Semantic Web
Conference (Galway, Ireland), 2005, S. Decker, J. Park, D. Quan, and L. Sauermann (Eds.).

(Schlieder, Naumann)

Schlieder, T., Naumann, F., Approximate tree embedding for querying cml data, ACM SIGIR
Workshop on CML and Information Retrieval.

(Semantic Desktop website)

Semantic Desktop, http://www.semanticdesktop.org/

(Sesame website)

Sesame, http://www.openrdf.org/

(Shasha et al., 2005)

 References

 60

Shasha, D., Wang, J., Shan, H., Zhang, K., Atreegrep: Approximate searching in unordered trees, in
Proc. of International Conference on Scientific and Statistical DB Management (2002) 89-98.

(Silberschatz et al., 2002)
Silberschatz, A., Korth, H.F., Sudarshan, S. (2002). Database System Concepts (4th Edition,
International Edition). Mc Graw Hill, ISBN 0-07-228363-7.

(Soboroff, 2002)

Soboroff, I., IR evaluation, 2002, http://www.csee.umbc.edu/~ian/irF02/lectures/09Evaluation.pdf

(Vassileva, Deters, 1998)

Vassileva, J. and Deters, R., Dynamic Course ware Generation on the WWW, British Journal of
Educational Technologies 1998, 29 (1), 5-14.

(Velegrakis et al., Deters, 2003)

Velegrakis, Y., Miller, R.J., and Popa, L. Mapping Adaptation under Evolving Schemas, VLDB'03,
Berlin, Germany, September (2003) 584-595. (full version in VLDB Journal)
http://www.almaden.ibm.com/cs/people/lucian/MappingAdaptation_VLDB03.pdf

(W3C, 2001)
W3C, Semantic web, http://www.w3.org/2001/sw/

(W3C, 2005)

W3C, SMIL, Synchronized Multimedia Language. http://www.w3.org/AudioVideo/

(W3C, 2005b)

W3C, XSL Transformations (XSLT) Version 2.0, 2005, http://www.w3.org/TR/2005/CR-xslt20-
20051103/

(W3C, 2006)

W3C, RDF, http://www.w3.org/RDF/, 2006

(Webster)

http://www.m-w.com/dictionary/

(Wikipedia)

http://en.wikipedia.org/wiki/Information_retrieval#First_dimension:_mathematical_basis

 (WordNet website)

The George Washington University JWordNet Implementation
http://www.seas.gwu.edu/~simhaweb/software/jwordnet/

(Wu, 2000)

Wu, H. A Reference Architecture for Adaptive Hypermedia Applications, doctoral thesis, Eindhoven
University of Technology, The Netherlands, ISBN 90-386-0572-2.

(Wu, De Bra, 2001)

Wu, H., De Bra, P. Sufficient Conditions for Well-Behaved Adaptive Hypermedia Systems. In
Proceedings of the First Asia-Pacific Conference on Web Intelligence: Research and Development
(Maebashi, October 2001). Lecture Notes in Artificial Intelligence, Vol. 2198, Springer, 148-152.

(Wu et al., 2001)

Wu, H., De Kort, E., De Bra, P. Design Issues for General-Purpose Adaptive Hypermedia Systems. In
Proceedings of the ACM Conference on Hypertext and Hypermedia (Aarhus, Denmark, August 2001)
141-150.

 References

 61

(Zhang et al., 1998)

Zhang, K., Wang, J., Shasha, D., On the editing distance between undirected acyclic graphs and related
problems, in Proc. of International Symposium on Combinatorial pattern matching (1998).

 Index

 62

Index
A

Adaptation Model (AM)...8, 9
Adaptive Hypermedia (AH) .1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 19, 20, 21, 22, 26, 28, 29, 30, 31,

38, 39, 45, 46, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 65
Adaptive Hypermedia system (AHS) 1, 2, 3, 7, 11, 13, 19, 31, 45, 51, 54, 56, 58

B

Beagle......................4, 5, 13, 15, 16, 23, 24, 25, 30, 36, 37, 38, 39, 40, 41, 46, 47, 48, 49, 52, 54, 57, 58
Beagle++4, 5, 13, 15, 16, 23, 24, 25, 30, 36, 37, 39, 40, 41, 46, 47, 48, 49, 52, 54, 57, 58

C

CAF (Common Adaptation Format).....2, 3, 11, 12, 13, 17, 18, 19, 22, 23, 25, 26, 40, 41, 45, 46, 50, 51,
52, 53, 54, 56, 71

Concept map,..3
Conceptual layer...7
Conversions & interfacing..12, 13

D

Domain map ... 2, 3, 8, 9, 11, 12, 39, 40, 45, 46

E

Enriching ..26, 38

G

Goal (and constraints) Map (GM) ..9
Goalmodel .. 3, 11, 12, 17, 18, 41

I

Installation..65
Intelligent Tutoring Systems (ITS)...7, 31, 57

L

LAOS
LAG adaptation layer ... 7, 9, 24, 51, 56, 58
Layered Model.. 4, 7, 8, 9, 11, 30, 32, 51, 56, 58

Lesson...35
Lesson layer..7, 30

M

Malleable schemas..47
Metadata ...37, 38, 39, 58
My Online Teacher (MOT)3, 4, 5, 7, 11, 13, 14, 15, 16, 19, 23, 30, 31, 32, 39, 40, 41, 44, 45, 46, 47,

49, 50, 51, 52, 54, 55, 58, 59, 60, 65, 66

O

Ontology...16, 60
OWL (Ontology web language) ... 7, 13, 16, 17, 54, 57, 59, 60

OWL DL (Description Logics)...16
OWL Full ...16
OWL Lite ...16, 59

P

PHP (PHP Hypertext Pre-processor) .. 45, 46, 50, 51, 57, 65, 66
Presentation Model (PM) ...8, 9, 10, 11

 Index

 63

R

RDF (Resource Description Format)2, 4, 7, 13, 14, 15, 16, 17, 18, 30, 36, 37, 39, 40, 41, 46, 47, 48, 51,
52, 53, 54, 57, 61

RDFS (Resource Description Format Schema) ..16, 17, 37

S

Semantic Desktop.....1, 2, 4, 5, 6, 7, 13, 15, 16, 17, 19, 23, 24, 29, 30, 31, 36, 37, 38, 41, 46, 47, 52, 53,
54, 55, 56, 58, 59, 60, 65

Semantic Web... 2, 7, 13, 16, 17, 30, 57, 58, 59, 60
Sesame.. 17, 30, 36, 37, 38, 40, 41, 45, 47, 52, 54, 57, 60, 65

U

UML (Unified modelling language)...31, 50, 66, 70
User Model (UM)... 8, 9, 10, 11, 57, 58

X

XSLT (XSL Transformations)... 7, 13, 17, 46, 61

 Appendix A. Installation Guide

 64

Appendix A. Installation guide
In this thesis we have described the integration of a Semantic Desktop environment and an Adaptive
Hypermedia authoring system. We made available a prototype of our approach. Below is a list of steps,
needed to install the prototype.

· Install MOT, see http://wwwis.win.tue.nl/~acristea/mot.html
· Install PHP see http://de2.PHP.net/manual/en/install.PHP
· Make sure the MySql extension is installed, this can be checked by making a file called

PHPinfo.PHP, with the contents <?PHP phpinfo(); ?> and checking if the resulting listing
(accessed through the web server) talks about MySql

· If it does not, uncomment (delete the ;)the following lines in the PHP.ini file:\\
· extension=PHP_MySql.dll
· extension=PHP_MySqli.dll

· On Windows put libMySql.dll in c:\windows and c:\windows\system32

· and put it in the right place found in:
· Configuration File (PHP.ini) extension_dir
· install Tomcat, see http://tomcat.apache.org/
· Install Sesame see http://www.openrdf.org
· download the MySql connector/j from www.MySql.org
· copy the MySql connector/j and the .jar files form the lib sub folder of the sesame installation

archive to ../sesame/WEB-INF/lib/
· configure Sesame with the configuration utility (load the configuration file just created

../sesame/WEB-INF/system.conf) (in ../sesame/WEB-INF/bin)
· On users tab, create a new user, and remember its user name and password, give it an id that

does not exist yet
· Go to the repositories tab and remove all of them except the one with rdbms-rdf-db
· Go to properties of the rdbms-rdf-db one (the magnifying glass icon)
· Create the database rdbmsrdfdb (or any other name, but if another name is used, the name of

the database in the Sesame configuration has to be changed) on the MySql server on localhost
in sail stack select the one ending with rdbms.RdfRepository

· In the parameters below enter a valid user name and password for the MySql server
· In the configuration, go to the tab access rights and set the access rights for the newly created

users to read and write and for the other users to none.
· For the repository, choose whether or not it should make use of schema inferences.

· make sure java jdk 1.4 or higher is installed
· make sure that the bin sub folder of the jdk is in the path
· for the enricher application first run compile.sh (linux/unux) or compile.bat (windows)
· change the configuration file, so that the user, password, database and location of the sesame

server match the installation

 Appendix B. UML description of MOT extension

 65

Appendix B. UML description of MOT extension
In this appendix the MOT extension is described in more detail. For the basic structure see section
4.5.1.
The database connection is a generic database connection class, capable of connection to any database
using an ODBC connection, as well as to a MySql database using the PHP-MySql and PHP-MySqli
methods. The xml2Array class is a class which uses standard PHP xml parsers to deliver the xml file as
an associate array.

db the database connection

Figure 39 db database connection

Figure 40 MOTImporter abstract importer class

 Appendix B. UML description of MOT extension

 66

Figure 41 domainImporter importer for domain model

Figure 42 goalImporter importer for goal model

Figure 43 MOTExporter abstract exporter class

Figure 44 domainExporter exporter for domain model

 Appendix B. UML description of MOT extension

 67

Figure 45 goalExporter exporter for goal model

Figure 46 MOTMerger abstract merger class

Figure 47 domainMerger merger for domain model

Figure 48 goalMerger merger for goal model

Figure 49 XmlToMotImporter

 Appendix B. UML description of MOT extension

 68

Figure 50 xml2Array xml parser

 Appendix C. UML description of enricher

 69

Appendix C. UML description of enricher
In this appendix the classes introduced in the overview in section 4.5.2 are given in more detail. The
enricherGUI class contains the user interface, which controls the program. The main action takes place
in the enricher.

Figure 51 The user interface

 Appendix C. UML description of enricher

 70

Figure 52 The enricher enriching the CAF files

 Appendix C. UML description of enricher

 71

Figure 53 ArtileScore keeps ranking, naming and attribute information for retrieved resources

 Appendix C. UML description of enricher

 72

Figure 54 Reads the configuration file and makes the settings available to the rest of the
application

Figure 55 Renders the tree view which is show for the author to choose resources to add

 Appendix C. UML description of enricher

 73

Figure 56 A node used on the tree view

